Suppr超能文献

使用改进的k均值聚类算法和1.5T高分辨率定量磁共振成像对丘脑核进行分割。

Segmentation of thalamic nuclei using a modified k-means clustering algorithm and high-resolution quantitative magnetic resonance imaging at 1.5 T.

作者信息

Deoni Sean C L, Rutt Brian K, Parrent Andrew G, Peters Terry M

机构信息

Centre for Neuroimaging Sciences, Institute of Psychiatry, King's College London, PO89, De Crespigny Park, Denmark Hill, London, SE5 8AF, UK.

出版信息

Neuroimage. 2007 Jan 1;34(1):117-26. doi: 10.1016/j.neuroimage.2006.09.016. Epub 2006 Oct 25.

Abstract

Patient outcome in minimally invasive stereotactic neurosurgical procedures depends on the ability to accurately locate the desired functional region within the deep brain while avoiding the surrounding anatomy. Due to the lack of sufficient contrast within this region in pre-operatively acquired MR images, electrophysiological exploration and histological atlases are currently required to define the surgical target within the thalamus in the treatment of many motor-control disorders. In this paper we introduce a method for segmenting the individual thalamic nuclei based on high-resolution quantitative magnetic resonance images, providing improved target visualization. The method was tested using whole-brain T1 and T2 data acquired from four healthy individuals. Accuracy of the segmentation results was assessed by comparing the center-of-mass coordinates of the segmented nuclei, with coordinates obtained from a classic histological atlas registered to these images. Strong agreement was found, with an average Euclidean distance difference of less than 4.5 mm averaged across all nuclei and all individuals. Reproducibility of the method, determined by calculating the percent similarity of segmentation results derived from data acquired from repeated scan sessions, was greater than 85%. These results illustrate the ability to accurately and reliably segment the primary nuclei of the thalamus and suggest that the method may have utility in the study of individual nuclear regions in disease state as well as for planning deep-brain surgical procedures.

摘要

微创立体定向神经外科手术的患者预后取决于在避免周围解剖结构的同时,准确在脑深部定位所需功能区域的能力。由于术前获取的磁共振图像中该区域缺乏足够的对比度,目前在治疗许多运动控制障碍时,需要进行电生理探索和组织学图谱来确定丘脑内的手术靶点。在本文中,我们介绍了一种基于高分辨率定量磁共振图像分割单个丘脑核的方法,可改善靶点可视化。该方法使用从四名健康个体获取的全脑T1和T2数据进行测试。通过比较分割核的质心坐标与从配准到这些图像的经典组织学图谱获得的坐标,评估分割结果的准确性。结果发现两者高度一致,所有核和所有个体的平均欧几里得距离差异小于4.5毫米。通过计算重复扫描会话获取的数据得出的分割结果的相似百分比来确定该方法的可重复性,结果大于85%。这些结果表明能够准确可靠地分割丘脑的主要核,并表明该方法可能在疾病状态下的单个核区域研究以及深部脑外科手术规划中具有实用价值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验