Mitome Masanori
Advanced Materials Laboratory, National Institute for Materials Science 1-1 Namiki Tsukuba Ibaraki, Japan.
J Electron Microsc (Tokyo). 2006 Aug;55(4):201-7. doi: 10.1093/jmicro/dfl026. Epub 2006 Nov 1.
The visibility of a Si crystalline nanoparticle of diameter 2 nm embedded in an amorphous SiO(2) layer is evaluated quantitatively by multislice calculation. The visibility depends on the crystal orientation of the Si nanoparticle, the thickness of the amorphous SiO(2) layer and the defocus. Scherzer defocus always gives the highest visibility at any crystal orientation. The visibility is higher when the incident beam is parallel to the (111) planes and the (111) fringes are most visible. The image of a Si nanoparticle is obscured by random images from the amorphous SiO(2) layer and the Si nanoparticle becomes invisible when it is misoriented or the amorphous layer is thicker than 60 nm. The probability that a Si nanoparticle can be distinguished from the random noise of amorphous images is 89% when the thickness of the amorphous SiO(2) layer is 12 nm, but this is reduced to 21% when the layer is 48 nm thick. These quantitative results are useful when estimating the density of Si nanoparticles including invisible nanoparticles.
通过多切片计算定量评估嵌入非晶态SiO₂层中的直径为2 nm的硅晶体纳米颗粒的可见性。可见性取决于硅纳米颗粒的晶体取向、非晶态SiO₂层的厚度和散焦。在任何晶体取向下,谢尔泽散焦总是给出最高的可见性。当入射光束平行于(111)平面时,可见性更高,并且(111)条纹最明显。硅纳米颗粒的图像被来自非晶态SiO₂层的随机图像遮挡,当硅纳米颗粒取向错误或非晶层厚度超过60 nm时,硅纳米颗粒变得不可见。当非晶态SiO₂层的厚度为12 nm时,硅纳米颗粒能够与非晶图像的随机噪声区分开的概率为89%,但当该层厚度为48 nm时,这一概率降至21%。这些定量结果在估计包括不可见纳米颗粒在内的硅纳米颗粒密度时很有用。