Suppr超能文献

随机动力系统中参数敏感性的谱方法。

Spectral methods for parametric sensitivity in stochastic dynamical systems.

作者信息

Kim D, Debusschere B J, Najm H N

机构信息

Sandia National Laboratories, Livermore, California, USA.

出版信息

Biophys J. 2007 Jan 15;92(2):379-93. doi: 10.1529/biophysj.106.085084. Epub 2006 Nov 3.

Abstract

Stochastic dynamical systems governed by the chemical master equation find use in the modeling of biological phenomena in cells, where they provide more accurate representations than their deterministic counterparts, particularly when the levels of molecular population are small. The analysis of parametric sensitivity in such systems requires appropriate methods to capture the sensitivity of the system dynamics with respect to variations of the parameters amid the noise from inherent internal stochastic effects. We use spectral polynomial chaos expansions to represent statistics of the system dynamics as polynomial functions of the model parameters. These expansions capture the nonlinear behavior of the system statistics as a result of finite-sized parametric perturbations. We obtain the normalized sensitivity coefficients by taking the derivative of this functional representation with respect to the parameters. We apply this method in two stochastic dynamical systems exhibiting bimodal behavior, including a biologically relevant viral infection model.

摘要

由化学主方程控制的随机动力系统可用于细胞中生物现象的建模,在这种情况下,它们比确定性对应物能提供更准确的表示,特别是当分子群体水平较小时。对此类系统中的参数敏感性进行分析,需要适当的方法来捕捉系统动力学在固有内部随机效应产生的噪声中对参数变化的敏感性。我们使用谱多项式混沌展开将系统动力学的统计量表示为模型参数的多项式函数。由于有限大小的参数扰动,这些展开捕捉了系统统计量的非线性行为。我们通过对这种函数表示关于参数求导来获得归一化的敏感性系数。我们将此方法应用于两个表现出双峰行为的随机动力系统,包括一个具有生物学相关性的病毒感染模型。

相似文献

1
Spectral methods for parametric sensitivity in stochastic dynamical systems.
Biophys J. 2007 Jan 15;92(2):379-93. doi: 10.1529/biophysj.106.085084. Epub 2006 Nov 3.
2
Simulation of stochastic systems via polynomial chaos expansions and convex optimization.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Sep;86(3 Pt 2):036702. doi: 10.1103/PhysRevE.86.036702. Epub 2012 Sep 17.
3
Estimating causal dependencies in networks of nonlinear stochastic dynamical systems.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Nov;80(5 Pt 1):051128. doi: 10.1103/PhysRevE.80.051128. Epub 2009 Nov 30.
4
Sensitivity analysis of discrete stochastic systems.
Biophys J. 2005 Apr;88(4):2530-40. doi: 10.1529/biophysj.104.053405. Epub 2005 Feb 4.
5
1/f Noise from nonlinear stochastic differential equations.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Mar;81(3 Pt 1):031105. doi: 10.1103/PhysRevE.81.031105. Epub 2010 Mar 8.
7
On stochastic optimal control of partially observable nonlinear quasi Hamiltonian systems.
J Zhejiang Univ Sci. 2004 Nov;5(11):1313-7. doi: 10.1631/jzus.2004.1313.
8
Dynamics of self-adjusting systems with noise.
Chaos. 2005 Sep;15(3):33902. doi: 10.1063/1.1953147.
10
Spectral analysis for nonstationary and nonlinear systems: a discrete-time-model-based approach.
IEEE Trans Biomed Eng. 2013 Aug;60(8):2233-41. doi: 10.1109/TBME.2013.2252347. Epub 2013 Mar 12.

引用本文的文献

1
Ranking of Reactions Based on Sensitivity of Protein Noise Depends on the Choice of Noise Measure.
PLoS One. 2015 Dec 1;10(12):e0143867. doi: 10.1371/journal.pone.0143867. eCollection 2015.
2
Accelerated Sensitivity Analysis in High-Dimensional Stochastic Reaction Networks.
PLoS One. 2015 Jul 10;10(7):e0130825. doi: 10.1371/journal.pone.0130825. eCollection 2015.
3
Parametric sensitivity analysis for biochemical reaction networks based on pathwise information theory.
BMC Bioinformatics. 2013 Oct 22;14:311. doi: 10.1186/1471-2105-14-311.
4
Modeling heterogeneous responsiveness of intrinsic apoptosis pathway.
BMC Syst Biol. 2013 Jul 23;7:65. doi: 10.1186/1752-0509-7-65.
5
Parameter sensitivity analysis of stochastic models provides insights into cardiac calcium sparks.
Biophys J. 2013 Mar 5;104(5):1142-50. doi: 10.1016/j.bpj.2012.12.055.
7
Algorithms and software for stochastic simulation of biochemical reacting systems.
Biotechnol Prog. 2008 Jan-Feb;24(1):56-61. doi: 10.1021/bp070255h. Epub 2007 Sep 26.

本文引用的文献

1
Sampling rare switching events in biochemical networks.
Phys Rev Lett. 2005 Jan 14;94(1):018104. doi: 10.1103/PhysRevLett.94.018104. Epub 2005 Jan 6.
2
Sensitivity analysis of discrete stochastic systems.
Biophys J. 2005 Apr;88(4):2530-40. doi: 10.1529/biophysj.104.053405. Epub 2005 Feb 4.
3
The slow-scale stochastic simulation algorithm.
J Chem Phys. 2005 Jan 1;122(1):14116. doi: 10.1063/1.1824902.
5
Mathematical and computational models of immune-receptor signalling.
Nat Rev Immunol. 2004 Jun;4(6):445-56. doi: 10.1038/nri1374.
6
Stochastic vs. deterministic modeling of intracellular viral kinetics.
J Theor Biol. 2002 Oct 7;218(3):309-21. doi: 10.1006/jtbi.2002.3078.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验