Kim D, Debusschere B J, Najm H N
Sandia National Laboratories, Livermore, California, USA.
Biophys J. 2007 Jan 15;92(2):379-93. doi: 10.1529/biophysj.106.085084. Epub 2006 Nov 3.
Stochastic dynamical systems governed by the chemical master equation find use in the modeling of biological phenomena in cells, where they provide more accurate representations than their deterministic counterparts, particularly when the levels of molecular population are small. The analysis of parametric sensitivity in such systems requires appropriate methods to capture the sensitivity of the system dynamics with respect to variations of the parameters amid the noise from inherent internal stochastic effects. We use spectral polynomial chaos expansions to represent statistics of the system dynamics as polynomial functions of the model parameters. These expansions capture the nonlinear behavior of the system statistics as a result of finite-sized parametric perturbations. We obtain the normalized sensitivity coefficients by taking the derivative of this functional representation with respect to the parameters. We apply this method in two stochastic dynamical systems exhibiting bimodal behavior, including a biologically relevant viral infection model.
由化学主方程控制的随机动力系统可用于细胞中生物现象的建模,在这种情况下,它们比确定性对应物能提供更准确的表示,特别是当分子群体水平较小时。对此类系统中的参数敏感性进行分析,需要适当的方法来捕捉系统动力学在固有内部随机效应产生的噪声中对参数变化的敏感性。我们使用谱多项式混沌展开将系统动力学的统计量表示为模型参数的多项式函数。由于有限大小的参数扰动,这些展开捕捉了系统统计量的非线性行为。我们通过对这种函数表示关于参数求导来获得归一化的敏感性系数。我们将此方法应用于两个表现出双峰行为的随机动力系统,包括一个具有生物学相关性的病毒感染模型。