Chen Jake Yue, Shen Changyu, Sivachenko Andrey Y
Indiana University School of Informatics, Purdue University School of Science, Dept. of Computer and Information Science Indianapolis, IN 46202, USA.
Pac Symp Biocomput. 2006:367-78.
Huge unrealized post-genome opportunities remain in the understanding of detailed molecular mechanisms for Alzheimer Disease (AD). In this work, we developed a computational method to rank-order AD-related proteins, based on an initial list of AD-related genes and public human protein interaction data. In this method, we first collected an initial seed list of 65 AD-related genes from the OMIM database and mapped them to 70 AD seed proteins. We then expanded the seed proteins to an enriched AD set of 765 proteins using protein interactions from the Online Predicated Human Interaction Database (OPHID). We showed that the expanded AD-related proteins form a highly connected and statistically significant protein interaction sub-network. We further analyzed the sub-network to develop an algorithm, which can be used to automatically score and rank-order each protein for its biological relevance to AD pathways(s). Our results show that functionally relevant AD proteins were consistently ranked at the top: among the top 20 of 765 expanded AD proteins, 19 proteins are confirmed to belong to the original 70 AD seed protein set. Our method represents a novel use of protein interaction network data for Alzheimer disease studies and may be generalized for other disease areas in the future.
在理解阿尔茨海默病(AD)的详细分子机制方面,仍存在大量未实现的后基因组机会。在这项工作中,我们基于与AD相关的基因初始列表和公开的人类蛋白质相互作用数据,开发了一种计算方法来对与AD相关的蛋白质进行排序。在这种方法中,我们首先从OMIM数据库收集了65个与AD相关的基因的初始种子列表,并将它们映射到70个AD种子蛋白。然后,我们利用来自在线预测人类相互作用数据库(OPHID)的蛋白质相互作用,将种子蛋白扩展为一个包含765个蛋白的富集AD集。我们表明,扩展后的与AD相关的蛋白质形成了一个高度连接且具有统计学意义的蛋白质相互作用子网。我们进一步分析该子网以开发一种算法,该算法可用于根据每个蛋白质与AD途径的生物学相关性自动对其进行评分和排序。我们的结果表明,功能相关的AD蛋白始终排名靠前:在765个扩展的AD蛋白中的前20个中,有19个蛋白被证实属于最初的70个AD种子蛋白集。我们的方法代表了蛋白质相互作用网络数据在阿尔茨海默病研究中的一种新应用,并且未来可能会推广到其他疾病领域。