Wilson Kristen S, Allen Andrew J, Washburn Newell R, Antonucci Joseph M
Polymers Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
J Biomed Mater Res A. 2007 Apr;81(1):113-23. doi: 10.1002/jbm.a.30975.
Small-angle and ultrasmall-angle neutron scattering (SANS and USANS) were used to characterize silica nanoparticle dispersion morphologies and the interphase in thermoset dimethacrylate polymer nanocomposites. Silica nanoparticle fillers were silanized with varying mass ratios of 3-methacryloxypropyltrimethoxysilane (MPTMS), a silane that interacts with the matrix through covalent and H-bonding, and n-octyltrimethoxysilane (OTMS), a silane that interacts through weak dispersion forces. Interphases with high OTMS mass fractions were found to be fractally rough with fractal dimensions, D(s), between 2.19 and 2.49. This roughness was associated with poor interfacial adhesion and inferior mechanical properties. Mean interparticle distances calculated for composites containing 10 mass % and 25 mass % silica suggest that the nanoparticles treated with more MPTMS than OTMS may be better dispersed than OTMS-rich nanoparticles. The results indicate that the covalent bonding and H-bonding of MPTMS-rich nanoparticles with the matrix are necessary for preparing well-dispersed nanocomposites. In addition, interphases containing equal masses of MPTMS and OTMS may yield composites with overall optimal properties. Finally, the combined SANS/USANS data could distinguish the differences, as a function of silane chemistry, in the nanoparticle/silane and silane/matrix interfaces that affect the overall mechanical properties of the composites.
小角和超小角中子散射(SANS和USANS)被用于表征热固性二甲基丙烯酸酯聚合物纳米复合材料中二氧化硅纳米颗粒的分散形态和界面相。二氧化硅纳米颗粒填料用不同质量比的3-甲基丙烯酰氧基丙基三甲氧基硅烷(MPTMS,一种通过共价键和氢键与基体相互作用的硅烷)和正辛基三甲氧基硅烷(OTMS,一种通过弱色散力相互作用的硅烷)进行硅烷化处理。发现具有高OTMS质量分数的界面相具有分形粗糙度,分形维数D(s)在2.19至2.49之间。这种粗糙度与较差的界面粘附力和机械性能有关。对含有10质量%和25质量%二氧化硅的复合材料计算得到的平均颗粒间距离表明,用MPTMS比OTMS更多处理的纳米颗粒可能比富含OTMS的纳米颗粒分散得更好。结果表明,富含MPTMS的纳米颗粒与基体的共价键合和氢键合对于制备分散良好的纳米复合材料是必要的。此外,含有等量MPTMS和OTMS的界面相可能产生具有总体最佳性能的复合材料。最后,结合的SANS/USANS数据可以区分作为硅烷化学函数的纳米颗粒/硅烷和硅烷/基体界面中的差异,这些差异会影响复合材料的整体机械性能。