te Pas M F, van Bergen en Henegouwen P M, Boonstra J, Ponec M
Department of Dermatology, University Hospital, State University Leiden, The Netherlands.
Arch Dermatol Res. 1991;283(2):125-30. doi: 10.1007/BF00371621.
Transformed keratinocytes (SCC-4, SCC-15, SCC-12F2, SVK14) or normal keratinocytes which differ in their differentiation programme were used to study the regulation of EGF-receptor expression. The capacity of the cells to differentiate was modulated by changing the extracellular calcium concentration. We were able to demonstrate that EGF-receptor expression in normal and transformed keratinocytes depends upon the cell type and one or more levels of regulatory control. At the DNA level, EGF-receptor gene amplification occurred in poorly differentiating cells. At the mRNA level, cells showing EGF-receptor gene amplification expressed elevated mRNA and protein levels when cultured under low Ca2+ conditions. Cells not exhibiting EGF-receptor gene amplification showed equal mRNA expression, regardless the Ca2+ concentration in the culture medium. At the protein level, EGF-receptor protein was decreased in cells exhibiting EGF-receptor gene amplification when extracellular Ca2+ was increased (to 1.6 mM) to stimulate differentiation, the decrease in protein being comparable to mRNA expression. Cells not exhibiting EGF-receptor gene amplification showed equal protein expression, regardless of the Ca2+ concentration in the culture medium. Under the same conditions, SV40 transformed keratinocytes showed equal mRNA but elevated protein expression in cells grown under low Ca2+ conditions. At the membrane level, normal keratinocytes and SCC-17F2 cells showed elevated numbers of cell surface exposed EGF-receptors in cells grown under low Ca2+ conditions, but equal mRNA and protein expression.(ABSTRACT TRUNCATED AT 250 WORDS)