Lionnet Timothée, Lankas Filip
Biophys J. 2007 Feb 15;92(4):L30-2. doi: 10.1529/biophysj.106.099572. Epub 2006 Dec 1.
Recent single-molecule micromanipulation experiments on DNA subject to small distortion revealed positive coupling between DNA stretching and twisting--for instance, DNA elongates when overtwisted. Here we propose a method to calculate the twist-stretch coupling constant specific to a DNA fragment of a given sequence. The method employs a sequence-dependent dinucleotide force field and is based on constrained minimization of the fragment's deformation energy. Using a force field inferred from atomistic molecular dynamics simulations, we obtain the twist-stretch coupling for random sequence to be 0.30 nm/turn, close to experimental values. An exhaustive calculation for all oligomers of nine basepairs yields values between 0.14 and 0.45 nm/turn, positively correlated with the contents of pyrimidine-purine steps in the sequence. Our method is simple to use and allows one to explore the hypothesis that some sequences may be optimized for twist-stretch coupling.
最近对受微小扭曲的DNA进行的单分子微操纵实验揭示了DNA拉伸与扭转之间的正耦合——例如,DNA在过度扭转时会伸长。在此,我们提出一种方法来计算特定于给定序列的DNA片段的扭转-拉伸耦合常数。该方法采用依赖于序列的二核苷酸力场,并基于片段变形能的约束最小化。利用从原子分子动力学模拟推断出的力场,我们得出随机序列的扭转-拉伸耦合为0.30 nm/圈,接近实验值。对所有九个碱基对的寡聚物进行详尽计算,得到的值在0.14至0.45 nm/圈之间,与序列中嘧啶-嘌呤步的含量呈正相关。我们的方法易于使用,并且允许人们探索某些序列可能针对扭转-拉伸耦合进行了优化这一假设。