Suppr超能文献

晶格蛋白质底物诱导折叠和重折叠的蒙特卡罗研究。

Monte Carlo study of substrate-induced folding and refolding of lattice proteins.

作者信息

Coluzza Ivan, Frenkel Daan

机构信息

Department of Chemistry, Cambridge University Centre for Computational Chemistry, Cambridge, United Kingdom.

出版信息

Biophys J. 2007 Feb 15;92(4):1150-6. doi: 10.1529/biophysj.106.084236. Epub 2006 Dec 1.

Abstract

Many proteins can switch from one conformation to another under the influence of an external driving force, such as the binding to a specific substrate. Using a simple lattice model we show that it is feasible to design protein-like lattice proteins that can have two different conformations, depending on whether or not they are bound to a substrate. We give three different examples of such substrate-induced refolding. In addition, we have explored substrate-induced folding of lattice proteins that do not fold when free in solution. We show that such proteins can bind with the same high specificity as prefolded protein, but have a considerably lower binding free energy. In this way proteins can bind to a substrate in a way that is highly specific, yet reversible.

摘要

许多蛋白质在外部驱动力的影响下可以从一种构象转变为另一种构象,例如与特定底物的结合。通过一个简单的晶格模型,我们表明设计出类似蛋白质的晶格蛋白是可行的,这些晶格蛋白可以有两种不同的构象,这取决于它们是否与底物结合。我们给出了这种底物诱导重折叠的三个不同例子。此外,我们还研究了在溶液中自由时不折叠的晶格蛋白的底物诱导折叠。我们表明,这类蛋白质可以与预折叠蛋白一样具有高特异性结合,但结合自由能要低得多。通过这种方式,蛋白质可以以高度特异性但可逆的方式与底物结合。

相似文献

1
Monte Carlo study of substrate-induced folding and refolding of lattice proteins.
Biophys J. 2007 Feb 15;92(4):1150-6. doi: 10.1529/biophysj.106.084236. Epub 2006 Dec 1.
2
Controlling the folding and substrate-binding of proteins using polymer brushes.
Phys Rev Lett. 2012 May 18;108(20):208104. doi: 10.1103/PhysRevLett.108.208104. Epub 2012 May 15.
3
Domains in folding of model proteins.
Protein Sci. 1995 Jun;4(6):1167-77. doi: 10.1002/pro.5560040615.
4
Molecular simulation of polymer assisted protein refolding.
J Chem Phys. 2005 Oct 1;123(13):134903. doi: 10.1063/1.2041547.
5
Confinement effects on the thermodynamics of protein folding: Monte Carlo simulations.
Biophys J. 2006 Mar 1;90(5):1767-73. doi: 10.1529/biophysj.105.071076. Epub 2005 Dec 16.
6
On the relation between native geometry and conformational plasticity.
Biophys Chem. 2008 Dec;138(3):99-106. doi: 10.1016/j.bpc.2008.09.006. Epub 2008 Sep 14.
7
Is burst hydrophobic collapse necessary for protein folding?
Biochemistry. 1995 Mar 7;34(9):3066-76. doi: 10.1021/bi00009a038.
9
Entropy reduction effect imposed by hydrogen bond formation on protein folding cooperativity: evidence from a hydrophobic minimalist model.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Nov;72(5 Pt 1):051903. doi: 10.1103/PhysRevE.72.051903. Epub 2005 Nov 1.

引用本文的文献

1
The hydrophobic effect characterises the thermodynamic signature of amyloid fibril growth.
PLoS Comput Biol. 2020 May 4;16(5):e1007767. doi: 10.1371/journal.pcbi.1007767. eCollection 2020 May.
2
Protein design under competing conditions for the availability of amino acids.
Sci Rep. 2020 Feb 14;10(1):2684. doi: 10.1038/s41598-020-59401-9.
3
The role of directional interactions in the designability of generalized heteropolymers.
Sci Rep. 2017 Jul 10;7(1):4986. doi: 10.1038/s41598-017-04720-7.
4
The hydrophobic temperature dependence of amino acids directly calculated from protein structures.
PLoS Comput Biol. 2015 May 22;11(5):e1004277. doi: 10.1371/journal.pcbi.1004277. eCollection 2015 May.
5
Transferable coarse-grained potential for de novo protein folding and design.
PLoS One. 2014 Dec 1;9(12):e112852. doi: 10.1371/journal.pone.0112852. eCollection 2014.
6
A coarse-grained approach to protein design: learning from design to understand folding.
PLoS One. 2011;6(7):e20853. doi: 10.1371/journal.pone.0020853. Epub 2011 Jul 1.
8
Structural interpretation of protein-protein interaction network.
BMC Struct Biol. 2010 May 17;10 Suppl 1(Suppl 1):S4. doi: 10.1186/1472-6807-10-S1-S4.
9
Classifying proteinlike sequences in arbitrary lattice protein models using LatPack.
HFSP J. 2008 Dec;2(6):396-404. doi: 10.2976/1.3027681. Epub 2008 Nov 26.
10
Disordered flanks prevent peptide aggregation.
PLoS Comput Biol. 2008 Dec;4(12):e1000241. doi: 10.1371/journal.pcbi.1000241. Epub 2008 Dec 19.

本文引用的文献

1
Virtual-move parallel tempering.
Chemphyschem. 2005 Sep 5;6(9):1779-83. doi: 10.1002/cphc.200400629.
2
Designing specificity of protein-substrate interactions.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Nov;70(5 Pt 1):051917. doi: 10.1103/PhysRevE.70.051917. Epub 2004 Nov 30.
3
Coupled folding-binding versus docking: a lattice model study.
J Chem Phys. 2004 Feb 22;120(8):3983-9. doi: 10.1063/1.1643900.
4
Protein topology determines binding mechanism.
Proc Natl Acad Sci U S A. 2004 Jan 13;101(2):511-6. doi: 10.1073/pnas.2534828100. Epub 2003 Dec 23.
5
Designing refoldable model molecules.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Oct;68(4 Pt 2):046703. doi: 10.1103/PhysRevE.68.046703. Epub 2003 Oct 13.
6
Simulating disorder-order transitions in molecular recognition of unstructured proteins: where folding meets binding.
Proc Natl Acad Sci U S A. 2003 Apr 29;100(9):5148-53. doi: 10.1073/pnas.0531373100. Epub 2003 Apr 15.
7
Conformational changes during kinesin motility.
Curr Opin Cell Biol. 2001 Feb;13(1):19-28. doi: 10.1016/s0955-0674(00)00169-1.
8
Speeding molecular recognition by using the folding funnel: the fly-casting mechanism.
Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):8868-73. doi: 10.1073/pnas.160259697.
9
The way things move: looking under the hood of molecular motor proteins.
Science. 2000 Apr 7;288(5463):88-95. doi: 10.1126/science.288.5463.88.
10
Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm.
J Mol Biol. 1999 Oct 22;293(2):321-31. doi: 10.1006/jmbi.1999.3110.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验