Sitara Despina, Razzaque Mohammed S, St-Arnaud René, Huang Wei, Taguchi Takashi, Erben Reinhold G, Lanske Beate
Department of Developmental Biology, Harvard School of Dental Medicine, REB 303, 188 Longwood Ave., Boston, MA 02115, USA, and The Genetics Unit, Shriners Hospital, Montreal, Quebec, Canada.
Am J Pathol. 2006 Dec;169(6):2161-70. doi: 10.2353/ajpath.2006.060329.
Fibroblast growth factor-23 (FGF-23) is one of the circulating phosphaturic factors associated with renal phosphate wasting. Fgf-23-/- animals show extremely high serum levels of phosphate and 1,25-dihydroxyvitamin D3, along with abnormal bone mineralization and soft tissue calcifications. To determine the role of vitamin D in mediating altered phosphate homeostasis and skeletogenesis in the Fgf-23-/- mice, we generated mice lacking both the Fgf-23 and 1alpha-hydroxylase genes (Fgf-23-/-/1alpha(OH)ase-/-). In the current study, we have identified the cellular source of Fgf-23 in adult mice. In addition, loss of vitamin D activities from Fgf-23-/- mice reverses the severe hyperphosphatemia to hypophosphatemia, attributable to increased urinary phosphate wasting in Fgf-23-/-/1alpha(OH)ase-/- mice, possibly as a consequence of decreased expression of NaPi2a. Ablation of vitamin D from Fgf-23-/- mice resulted in further reduction of total bone mineral content and bone mineral density and reversed ectopic calcification of skeleton and soft tissues, suggesting that abnormal mineral ion homeostasis and impaired skeletogenesis in Fgf-23-/- mice are mediated through enhanced vitamin D activities. In conclusion, using genetic manipulation studies, we have provided evidence for an in vivo inverse correlation between Fgf-23 and vitamin D activities and for the severe skeletal and soft tissue abnormalities of Fgf-23-/- mice being mediated through vitamin D.
成纤维细胞生长因子23(FGF - 23)是与肾性磷酸盐消耗相关的循环磷调节因子之一。Fgf - 23基因敲除的动物血清磷酸盐和1,25 - 二羟基维生素D3水平极高,同时伴有骨矿化异常和软组织钙化。为了确定维生素D在介导Fgf - 23基因敲除小鼠磷酸盐稳态改变和骨骼生成异常中的作用,我们培育了同时缺乏Fgf - 23和1α - 羟化酶基因的小鼠(Fgf - 23 - / - /1α(OH)ase - / -)。在本研究中,我们确定了成年小鼠中Fgf - 23的细胞来源。此外,Fgf - 23基因敲除小鼠维生素D活性的丧失将严重的高磷血症逆转为低磷血症,这归因于Fgf - 23 - / - /1α(OH)ase - / -小鼠尿磷酸盐排泄增加,可能是NaPi2a表达降低的结果。Fgf - 23基因敲除小鼠中维生素D的缺失导致骨矿物质总量和骨密度进一步降低,并逆转了骨骼和软组织的异位钙化,表明Fgf - 23基因敲除小鼠中异常的矿物质离子稳态和骨骼生成受损是通过增强的维生素D活性介导的。总之,通过基因操作研究,我们提供了证据表明Fgf - 23与维生素D活性在体内呈负相关,且Fgf - 23基因敲除小鼠严重的骨骼和软组织异常是由维生素D介导的。