Liao Siyun, Porter Darius, Scott Alana, Newman Gilbert, Doetschman Thomas, Schultz Jo El J
Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, 231 Albert Sabin Way, ML 0575, Cincinnati, OH 45267, USA.
J Mol Cell Cardiol. 2007 Jan;42(1):106-20. doi: 10.1016/j.yjmcc.2006.10.005. Epub 2006 Dec 5.
Our laboratory showed that overexpression of fibroblast growth factor-2 (FGF2) protected the heart against ischemia-reperfusion injury. FGF2 has different protein isoforms (low [LMW] and high [HMW] molecular weight isoforms) produced from alternative translation start sites. However, which FGF2 isoform(s) mediates this cardioprotection, and which signaling pathway (i.e., mitogen-activated protein kinase (MAPK)) elicits FGF2 isoform-induced cardioprotection remains to be elucidated.
Wildtype, Fgf2 KO (absence of all FGF2 isoforms) and FGF2 LMWKO (absence of LMW isoform) hearts were subjected to an ex vivo work-performing heart ischemic model of 60 min ischemia and 120 min reperfusion. There was a significant decrease in the recovery of post-ischemic contractile function (p<0.05) in Fgf2 KO and FGF2 LMWKO mouse hearts compared to wildtype hearts. Following ischemia-reperfusion injury, MKK4/7, JNK, and c-Jun were significantly phosphorylated (i.e., activated), and the levels of TUNEL-positive nuclei and caspase 3 cleavage were significantly increased in vehicle-treated Fgf2 KO and FGF2 LMWKO compared to wildtype hearts (p<0.05). A novel JNK pathway inhibitor, CEP11004 (50 nM), significantly restored the post-ischemic contractile function and reduced myocardial cell death, as measured by CK release and apoptotic markers, compared to DMSO-treated cohorts (p<0.05). Overall, our data indicate that the LMW isoform has an important role in restoring cardiac function after ischemia-reperfusion (I/R) injury. These results provide unequivocal evidence that inhibition of JNK signaling is involved in FGF2 LMW isoform-mediated cardioprotection and that the potential mechanism may be through inhibition of the apoptotic process.
我们实验室的研究表明,成纤维细胞生长因子2(FGF2)的过表达可保护心脏免受缺血再灌注损伤。FGF2由不同的翻译起始位点产生不同的蛋白质异构体(低分子量[LMW]和高分子量[HMW]异构体)。然而,哪种FGF2异构体介导这种心脏保护作用,以及哪种信号通路(即丝裂原活化蛋白激酶[MAPK])引发FGF2异构体诱导的心脏保护作用仍有待阐明。
野生型、Fgf2基因敲除(所有FGF2异构体均缺失)和FGF2低分子量基因敲除(低分子量异构体缺失)的心脏接受了离体工作的心脏缺血模型,缺血60分钟,再灌注120分钟。与野生型心脏相比,Fgf2基因敲除和FGF2低分子量基因敲除小鼠心脏缺血后收缩功能的恢复显著降低(p<0.05)。缺血再灌注损伤后,与野生型心脏相比,在给予载体处理的Fgf2基因敲除和FGF2低分子量基因敲除小鼠中,MKK4/7、JNK和c-Jun显著磷酸化(即活化),TUNEL阳性细胞核水平和半胱天冬酶3切割水平显著升高(p<0.05)。与给予二甲基亚砜处理的组相比,一种新型JNK通路抑制剂CEP11004(50 nM)显著恢复了缺血后收缩功能,并减少了心肌细胞死亡,这通过肌酸激酶释放和凋亡标志物来衡量(p<0.05)。总体而言,我们的数据表明,低分子量异构体在缺血再灌注(I/R)损伤后恢复心脏功能中具有重要作用。这些结果提供了明确的证据,即抑制JNK信号通路参与FGF2低分子量异构体介导的心脏保护作用,其潜在机制可能是通过抑制凋亡过程。