Suppr超能文献

一种利用心电图形态和心跳间期特征的患者自适应心跳分类器。

A patient-adapting heartbeat classifier using ECG morphology and heartbeat interval features.

作者信息

de Chazal Philip, Reilly Richard B

机构信息

BiancaMed Ltd., NovaUCD, Belfield Innovation Park, University College Dublin, Belfield Dublin 4, Ireland.

出版信息

IEEE Trans Biomed Eng. 2006 Dec;53(12 Pt 1):2535-43. doi: 10.1109/TBME.2006.883802.

Abstract

An adaptive system for the automatic processing of the electrocardiogram (ECG) for the classification of heartbeats into one of the five beat classes recommended by ANSI/AAMI EC57:1998 standard is presented. The heartbeat classification system processes an incoming recording with a global-classifier to produce the first set of beat annotations. An expert then validates and if necessary corrects a fraction of the beats of the recording. The system then adapts by first training a local-classifier using the newly annotated beats and combines this with the global-classifier to produce an adapted classification system. The adapted system is then used to update beat annotations. The results of this study show that the performance of a patient adaptable classifier increases with the amount of training of the system on the local record. Crucially, the performance of the system can be significantly boosted with a small amount of adaptation even when all beats used for adaptation are from a single class. This study illustrates the ability to provide highly beneficial automatic arrhythmia monitoring and is an improvement on previously reported results for automated heartbeat classification systems.

摘要

本文提出了一种自适应系统,用于自动处理心电图(ECG),以便将心跳分类为ANSI/AAMI EC57:1998标准推荐的五种心跳类别之一。心跳分类系统使用全局分类器处理传入的记录,以生成第一组心跳注释。然后,专家对记录中的一部分心跳进行验证,并在必要时进行纠正。然后,系统首先使用新注释的心跳训练局部分类器,并将其与全局分类器相结合,以生成自适应分类系统。然后使用自适应系统更新心跳注释。这项研究的结果表明,患者自适应分类器的性能会随着系统在局部记录上的训练量而提高。至关重要的是,即使用于自适应的所有心跳都来自单一类别,通过少量自适应也可以显著提高系统的性能。这项研究说明了提供高度有益的自动心律失常监测的能力,并且是对先前报道的自动心跳分类系统结果的改进。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验