Kombian Samuel B, Ananthalakshmi Kethireddy V V, Edafiogho Ivan O
Department of Applied Therapeutics, Faculty of Pharmacy, Health Sciences Centre, Kuwait University, PO Box 24923, Safat 13110, Kuwait.
Eur J Neurosci. 2006 Nov;24(10):2781-8. doi: 10.1111/j.1460-9568.2006.05152.x.
We recently reported that anticonvulsant anilino enaminones depress excitatory postsynaptic currents (EPSCs) in the nucleus accumbens (NAc) indirectly via gamma-aminobutyric acid (GABA) acting on GABA(B) receptors [S.B. Kombian et al. (2005)Br. J. Pharmacol., 145, 945-953]. Norepinephrine (NE) and dopamine (DA), both known to be involved in seizure disorders, also depress EPSCs in this nucleus. The current study explored a possible interaction between enaminones and adrenergic and/or dopaminergic mechanisms that may contribute to their synaptic depression and anticonvulsant effect. Using whole-cell recording in rat forebrain slices containing the NAc, we show that NE-induced, but not DA-induced, EPSC depression occludes E139-induced EPSC depressant effect. UK14,304, a selective alpha(2) receptor agonist, mimicked the synaptic effect of NE and also occluded E139 effects. Phentolamine, a non-selective alpha-adrenergic antagonist that blocked NE-induced EPSC depression, also blocked the E139-induced EPSC depression. Furthermore, yohimbine, an alpha(2)-adrenoceptor antagonist, also blocked the E139-induced EPSC depression, while prazosin, a selective alpha(1)-adrenergic antagonist, and propranolol, a non-selective beta-adrenoceptor antagonist, did not block the E139 effect. Similar to the E139-induced EPSC depression, the NE-induced EPSC depression was also blocked by the GABA(B) receptor antagonist, CGP55845. By contrast, however, neither SCH23390 nor sulpiride, D1-like and D2-like DA receptor antagonists, respectively, blocked the E139-induced synaptic depression. These results suggest that NE and E139, but not DA, employ a similar mechanism to depress EPSCs in the NAc, and support the hypothesis that E139, like NE, may act on alpha(2)-adrenoceptors to cause the release of GABA, which then mediates synaptic depression via GABA(B) receptors.
我们最近报道,抗惊厥苯胺基烯胺酮通过作用于GABA(B)受体的γ-氨基丁酸(GABA)间接抑制伏隔核(NAc)中的兴奋性突触后电流(EPSCs)[S.B. Kombian等人(2005年),《英国药理学期刊》,145卷,945 - 953页]。去甲肾上腺素(NE)和多巴胺(DA)都已知与癫痫发作障碍有关,它们也会抑制该核中的EPSCs。当前研究探讨了烯胺酮与肾上腺素能和/或多巴胺能机制之间可能的相互作用,这可能有助于它们的突触抑制和抗惊厥作用。在含有NAc的大鼠前脑切片中使用全细胞记录,我们发现NE诱导的而非DA诱导的EPSC抑制会抵消E139诱导的EPSC抑制作用。UK14,304,一种选择性α(2)受体激动剂,模拟了NE的突触效应,并且也抵消了E139的效应。酚妥拉明,一种非选择性α-肾上腺素能拮抗剂,可阻断NE诱导的EPSC抑制,也能阻断E139诱导的EPSC抑制。此外,育亨宾,一种α(2)-肾上腺素能拮抗剂,也能阻断E139诱导的EPSC抑制,而哌唑嗪,一种选择性α(1)-肾上腺素能拮抗剂,以及普萘洛尔,一种非选择性β-肾上腺素能拮抗剂,均不能阻断E139的效应。与E139诱导的EPSC抑制相似,NE诱导的EPSC抑制也被GABA(B)受体拮抗剂CGP55845阻断。然而,相比之下,D1样和D2样DA受体拮抗剂SCH23390和舒必利均不能阻断E139诱导的突触抑制。这些结果表明,NE和E139而非DA采用相似机制抑制NAc中的EPSCs,并支持这样的假说,即E139与NE一样,可能作用于α(2)-肾上腺素能受体以促使GABA释放,然后GABA通过GABA(B)受体介导突触抑制。