Kitano Masaaki, Funatsu Keisho, Matsuoka Masaya, Ueshima Michio, Anpo Masakazu
Industry-University Cooperation Organization, Osaka Prefecture University, Naka-ku, Sakai, Osaka 599-8570, Japan.
J Phys Chem B. 2006 Dec 21;110(50):25266-72. doi: 10.1021/jp064893e.
Nitrogen-substituted TiO2 (N-TiO2) thin film photocatalysts have been prepared by a radio frequency magnetron sputtering (RF-MS) deposition method using a N2/Ar mixture sputtering gas. The effect of the concentration of substituted nitrogen on the characteristics of the N-TiO2 thin films was investigated by UV-vis absorption spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and scanning electron microscopy (SEM) analyses. The absorption band of the N-TiO2 thin film was found to shift smoothly to visible light regions up to 550 nm, its extent depending on the concentration of nitrogen substituted within the TiO2 lattice in a range of 2.0-16.5%. The N-TiO2 thin film photocatalyst with a nitrogen concentration of 6.0% exhibited the highest reactivity for the photocatalytic oxidation of 2-propanol diluted in water even under visible (lambda > or = 450 nm) or solar light irradiation. Moreover, N-TiO2 thin film photocatalysts prepared on conducting glass electrodes showed anodic photocurrents attributed to the photooxidation of water under visible light, its extent depending on wavelengths up to 550 nm. The absorbed photon to current conversion efficiencies reached 25.2% and 22.4% under UV (lambda = 360 nm) and visible light (lambda = 420 nm), respectively. UV-vis and photoelectrochemical investigations also confirmed that these thin films remain thermodynamically and mechanically stable even under heat treatment at 673 K. In addition, XPS and XRD studies revealed that a significantly high substitution of the lattice O atoms of the TiO2 with the N atoms plays a crucial role in the band gap narrowing of the TiO2 thin films, enabling them to absorb and operate under visible light irradiation as a highly reactive, effective photocatalyst.
采用射频磁控溅射(RF-MS)沉积法,以氮气/氩气混合溅射气体制备了氮取代二氧化钛(N-TiO₂)薄膜光催化剂。通过紫外-可见吸收光谱、X射线光电子能谱(XPS)、X射线衍射(XRD)和扫描电子显微镜(SEM)分析,研究了取代氮浓度对N-TiO₂薄膜特性的影响。发现N-TiO₂薄膜的吸收带平滑地向高达550nm的可见光区域移动,其移动程度取决于TiO₂晶格中取代氮的浓度,范围为2.0%-16.5%。氮浓度为6.0%的N-TiO₂薄膜光催化剂即使在可见光(λ≥450nm)或太阳光照射下,对水中稀释的2-丙醇的光催化氧化也表现出最高的反应活性。此外,在导电玻璃电极上制备的N-TiO₂薄膜光催化剂在可见光下显示出归因于水的光氧化的阳极光电流,其大小取决于高达550nm的波长。在紫外光(λ=360nm)和可见光(λ=420nm)下,吸收光子到电流的转换效率分别达到25.2%和22.4%。紫外-可见和光电化学研究还证实,即使在673K的热处理下,这些薄膜在热力学和机械性能上仍保持稳定。此外,XPS和XRD研究表明,TiO₂晶格中的O原子被N原子大量取代在TiO₂薄膜的带隙变窄中起关键作用,使它们能够在可见光照射下作为高活性、有效的光催化剂吸收和发挥作用。