Cascella Michele, Magistrato Alessandra, Tavernelli Ivano, Carloni Paolo, Rothlisberger Ursula
Ecole Polytechnique Fédérale de Lausanne, Laboratory of Computational Chemistry and Biochemistry, 1015 Lausanne, Switzerland.
Proc Natl Acad Sci U S A. 2006 Dec 26;103(52):19641-6. doi: 10.1073/pnas.0607890103. Epub 2006 Dec 18.
We have coupled hybrid quantum mechanics (density functional theory; Car-Parrinello)/molecular mechanics molecular dynamics simulations to a grand-canonical scheme, to calculate the in situ redox potential of the Cu(2+) + e(-) --> Cu(+) half reaction in azurin from Pseudomonas aeruginosa. An accurate description at atomistic level of the environment surrounding the metal-binding site and finite-temperature fluctuations of the protein structure are both essential for a correct quantitative description of the electronic properties of this system. We report a redox potential shift with respect to copper in water of 0.2 eV (experimental 0.16 eV) and a reorganization free energy lambda = 0.76 eV (experimental 0.6-0.8 eV). The electrostatic field of the protein plays a crucial role in fine tuning the redox potential and determining the structure of the solvent. The inner-sphere contribution to the reorganization energy is negligible. The overall small value is mainly due to solvent rearrangement at the protein surface.
我们已将混合量子力学(密度泛函理论;Car-Parrinello)/分子力学分子动力学模拟与巨正则系综相结合,以计算铜绿假单胞菌中蓝铜蛋白里Cu(2+) + e(-) --> Cu(+)半反应的原位氧化还原电位。要正确定量描述该系统的电子性质,对金属结合位点周围环境进行准确的原子水平描述以及蛋白质结构的有限温度波动都是必不可少的。我们报告相对于水中铜的氧化还原电位偏移为0.2电子伏特(实验值为0.16电子伏特),重组自由能λ = 0.76电子伏特(实验值为0.6 - 0.8电子伏特)。蛋白质的静电场在微调氧化还原电位和确定溶剂结构方面起着关键作用。内球对重组能的贡献可忽略不计。总体较小的值主要归因于蛋白质表面的溶剂重排。