Suppr超能文献

强烈的群体分化特征塑造了跨越人类CD28、CTLA4和ICOS共刺激基因的延伸单倍型。

Signatures of strong population differentiation shape extended haplotypes across the human CD28, CTLA4, and ICOS costimulatory genes.

作者信息

Butty Vincent, Roy Matt, Sabeti Pardis, Besse Whitney, Benoist Christophe, Mathis Diane

机构信息

Section on Immunology and Immunogenetics, Joslin Diabetes Center, MA 02215, USA.

出版信息

Proc Natl Acad Sci U S A. 2007 Jan 9;104(2):570-5. doi: 10.1073/pnas.0610124104. Epub 2006 Dec 29.

Abstract

The three members of the costimulatory receptor family, CD28, CTLA-4, and ICOS, have complementary effects on T cell activation, and their balance controls the overall outcome of immune and autoimmune responses. They are encoded in a short genomic interval, and overall activity may result from interplay between allelic variants at each locus. With multiethnic DNA panels that represent a wide spectrum of human populations, we demonstrate long-range linkage disequilibrium among the three genes. A large fraction of the variation found in the locus can be explained by the presence of extended haplotypes encompassing variants at CD28, CTLA4, and the ICOS promoter. There are unusual differences in the distribution of some variants and haplotypes between geographic regions. The differences may reflect demographic events and/or the adaptation to diverse environmental and microbial challenges encountered in the course of human migrations and will be important to consider when interpreting association to immune/autoimmune responsiveness.

摘要

共刺激受体家族的三个成员,即CD28、CTLA-4和ICOS,对T细胞活化具有互补作用,它们之间的平衡控制着免疫和自身免疫反应的总体结果。它们在一个短的基因组区间内编码,总体活性可能源于每个基因座上等位基因变体之间的相互作用。利用代表广泛人类群体的多民族DNA样本,我们证明了这三个基因之间存在长程连锁不平衡。该基因座中发现的大部分变异可以通过包含CD28、CTLA4和ICOS启动子变体的扩展单倍型的存在来解释。地理区域之间某些变体和单倍型的分布存在异常差异。这些差异可能反映了人口统计学事件和/或对人类迁徙过程中遇到的各种环境和微生物挑战的适应,在解释与免疫/自身免疫反应性的关联时,这些差异将是需要考虑的重要因素。

相似文献

1
Signatures of strong population differentiation shape extended haplotypes across the human CD28, CTLA4, and ICOS costimulatory genes.
Proc Natl Acad Sci U S A. 2007 Jan 9;104(2):570-5. doi: 10.1073/pnas.0610124104. Epub 2006 Dec 29.
2
Evidence for unique association signals in SLE at the CD28-CTLA4-ICOS locus in a family-based study.
Hum Mol Genet. 2006 Nov 1;15(21):3195-205. doi: 10.1093/hmg/ddl395. Epub 2006 Sep 25.
3
Genetic polymorphism of the human ICOS gene.
Immunogenetics. 2002 Mar;53(12):1028-32. doi: 10.1007/s00251-002-0431-2. Epub 2002 Feb 6.
6
Association studies of CTLA-4, CD28, and ICOS gene polymorphisms with B-cell chronic lymphocytic leukemia in the Polish population.
Hum Immunol. 2008 Mar;69(3):193-201. doi: 10.1016/j.humimm.2008.01.014. Epub 2008 Mar 3.
7
Genetic analysis of the 2q33 region containing CD28-CTLA4-ICOS genes: association with non-Hodgkin's lymphoma.
Br J Haematol. 2005 Jun;129(6):784-90. doi: 10.1111/j.1365-2141.2005.05525.x.
8
Haplotypes in the CTLA4 region are associated with coeliac disease in the Irish population.
Genes Immun. 2006 Jan;7(1):19-26. doi: 10.1038/sj.gene.6364265.
9
Characterization of CD28, CTLA4, and ICOS polymorphisms in three Brazilian ethnic groups.
Hum Immunol. 2005 Jul;66(7):773-6. doi: 10.1016/j.humimm.2005.04.007.

引用本文的文献

2
Current understanding of CTLA-4: from mechanism to autoimmune diseases.
Front Immunol. 2023 Jul 11;14:1198365. doi: 10.3389/fimmu.2023.1198365. eCollection 2023.
4
A semi-supervised model to predict regulatory effects of genetic variants at single nucleotide resolution using massively parallel reporter assays.
Bioinformatics. 2021 Aug 4;37(14):1953–1962. doi: 10.1093/bioinformatics/btab040. Epub 2021 Jan 30.
5
Accelerator or Brake: Immune Regulators in Malaria.
Front Cell Infect Microbiol. 2020 Dec 10;10:610121. doi: 10.3389/fcimb.2020.610121. eCollection 2020.
6
and Not or Polymorphism Mediates Clinical Malaria and Parasitemia among Children from Nigeria.
Microorganisms. 2020 Jan 23;8(2):158. doi: 10.3390/microorganisms8020158.
8
CTLA-4 as a genetic determinant in autoimmune Addison's disease.
Genes Immun. 2015 Sep;16(6):430-6. doi: 10.1038/gene.2015.27. Epub 2015 Jul 23.
9
Vitamin D Antagonises the Suppressive Effect of Inflammatory Cytokines on CTLA-4 Expression and Regulatory Function.
PLoS One. 2015 Jul 2;10(7):e0131539. doi: 10.1371/journal.pone.0131539. eCollection 2015.
10
CTLA-4 controls follicular helper T-cell differentiation by regulating the strength of CD28 engagement.
Proc Natl Acad Sci U S A. 2015 Jan 13;112(2):524-9. doi: 10.1073/pnas.1414576112. Epub 2014 Dec 29.

本文引用的文献

1
Positive natural selection in the human lineage.
Science. 2006 Jun 16;312(5780):1614-20. doi: 10.1126/science.1124309.
2
A molecular perspective of CTLA-4 function.
Annu Rev Immunol. 2006;24:65-97. doi: 10.1146/annurev.immunol.24.021605.090535.
4
A haplotype map of the human genome.
Nature. 2005 Oct 27;437(7063):1299-320. doi: 10.1038/nature04226.
5
Perspectives on human genetic variation from the HapMap Project.
PLoS Genet. 2005 Oct;1(4):e54. doi: 10.1371/journal.pgen.0010054.
6
Haplotypes in the CTLA4 region are associated with coeliac disease in the Irish population.
Genes Immun. 2006 Jan;7(1):19-26. doi: 10.1038/sj.gene.6364265.
7
An evolutionary framework for common diseases: the ancestral-susceptibility model.
Trends Genet. 2005 Nov;21(11):596-601. doi: 10.1016/j.tig.2005.08.007. Epub 2005 Sep 8.
9
Haplotype tagging efficiency in worldwide populations in CTLA4 gene.
Genes Immun. 2005 Dec;6(8):646-57. doi: 10.1038/sj.gene.6364251.
10
Linkage disequilibrium: ancient history drives the new genetics.
Hum Hered. 2005;59(2):118-24. doi: 10.1159/000085226. Epub 2005 Apr 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验