Wieland Thomas
Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät Mannheim, Universität Heidelberg, Maybachstrasse 14, D-68169 Mannheim, Germany.
Naunyn Schmiedebergs Arch Pharmacol. 2007 Feb;374(5-6):373-83. doi: 10.1007/s00210-006-0126-6. Epub 2007 Jan 3.
It is generally accepted that G protein coupled receptors (GPCR) activate heterotrimeric G proteins by inducing a GDP/GTP exchange at the G protein alpha subunit. In addition, the transfer of high energetic phosphate by nucleoside diphosphate kinase (NDPK) and/or the beta subunit of G proteins (Gbeta) can induce G protein activation. Recent evidence suggests that the NDPK isoform B (NDPK B) forms a complex with Gbetagamma dimers. In this complex, NDPK B acts as a protein histidine kinase phosphorylating Gbeta at histidine residue 266 (His266). The high energetic phosphoamidate bond on His266 allows for a phosphate transfer specifically onto GDP and thus local formation of GTP, which binds to and thereby activates the respective G protein alpha subunit. Apparently, this process occurs independent of the classical GPCR-induced GDP/GTP exchange at least for members of the G(s) and G(i) subfamilies of heterotrimeric G proteins. By using a mutant of Gbeta(1) in which His266 was replaced by Leu, it was recently demonstrated that NDPK B/Gbetagamma-mediated G(s) activation contributes by about 50% to basal cAMP formation and contractility in rat cardiac myocytes. Besides its apparent role in G protein activation, the complex formation of NDPK B with Gbetagamma dimers might be essential for G protein stability. Depletion of either the NDPK B orthologue or Gbeta(1) isoforms in zebrafish embryos led to a similar phenotype displaying contractile dysfunction in the heart accompanied by a complete loss of heterotrimeric G protein expression. In conclusion, the interaction of NDKP B with Gbetagamma dimers might play an important role in signal transduction, and alterations in this novel pathway might be of pathophysiological importance.
普遍认为,G蛋白偶联受体(GPCR)通过诱导G蛋白α亚基上的GDP / GTP交换来激活异源三聚体G蛋白。此外,核苷二磷酸激酶(NDPK)和/或G蛋白的β亚基(Gβ)转移高能磷酸基团也可诱导G蛋白激活。最近的证据表明,NDPK同工型B(NDPK B)与Gβγ二聚体形成复合物。在该复合物中,NDPK B作为蛋白组氨酸激酶,使Gβ的组氨酸残基266(His266)磷酸化。His266上的高能磷酰胺键允许磷酸基团特异性转移到GDP上,从而局部形成GTP,GTP结合并激活相应的G蛋白α亚基。显然,至少对于异源三聚体G蛋白的G(s)和G(i)亚家族成员而言,该过程独立于经典的GPCR诱导的GDP / GTP交换而发生。最近通过使用His266被Leu取代的Gβ(1)突变体证明,NDPK B / Gβγ介导的G(s)激活对大鼠心肌细胞的基础cAMP形成和收缩性贡献约50%。除了在G蛋白激活中具有明显作用外,NDPK B与Gβγ二聚体的复合物形成可能对G蛋白稳定性至关重要。斑马鱼胚胎中NDPK B同源物或Gβ(1)同工型的缺失导致相似的表型,表现为心脏收缩功能障碍,同时异源三聚体G蛋白表达完全丧失。总之,NDKP B与Gβγ二聚体的相互作用可能在信号转导中起重要作用,并且这条新途径的改变可能具有病理生理学意义。