Stamey James D, Seaman John W, Young Dean M
Department of Statistical Science, Baylor University, Waco, Texas, USA.
J Biopharm Stat. 2007;17(1):93-108. doi: 10.1080/10543400601001493.
We consider studies in which an enrolled subject tests positive on a fallible test. After an intervention, disease status is re-diagnosed with the same fallible instrument. Potential misclassification in the diagnostic test causes regression to the mean that biases inferences about the true intervention effect. The existing likelihood approach suffers in situations where either sensitivity or specificity is near 1. In such cases, common in many diagnostic tests, confidence interval coverage can often be below nominal for the likelihood approach. Another potential drawback of the maximum likelihood estimator (MLE) method is that it requires validation data to eliminate identification problems. We propose a Bayesian approach that offers improved performance in general, but substantially better performance than the MLE method in the realistic case of a highly accurate diagnostic test. We obtain this superior performance using no more information than that employed in the likelihood method. Our approach is also more flexible, doing without validation data if necessary, but accommodating multiple sources of information, if available, thereby systematically eliminating identification problems. We show via a simulation study that our Bayesian approach outperforms the MLE method, especially when the diagnostic test has high sensitivity, specificity, or both. We also consider a real data example for which the diagnostic test specificity is close to 1 (false positive probability close to 0).
我们考虑的研究中,入组的受试者在一项存在误差的检测中呈阳性。经过干预后,使用相同的存在误差的检测工具重新诊断疾病状态。诊断检测中潜在的错误分类会导致均值回归,从而使对真实干预效果的推断产生偏差。现有的似然方法在灵敏度或特异度接近1的情况下会出现问题。在许多诊断检测中常见的这种情况下,似然方法的置信区间覆盖率往往会低于名义水平。最大似然估计(MLE)方法的另一个潜在缺点是它需要验证数据来消除识别问题。我们提出一种贝叶斯方法,该方法总体上具有更好的性能,但在诊断检测高度准确的实际情况下,其性能比MLE方法要好得多。我们使用的信息不比似然方法所使用的信息多就能获得这种卓越的性能。我们的方法也更灵活,必要时无需验证数据,但如果有可用的信息,可以容纳多个信息源,从而系统地消除识别问题。我们通过模拟研究表明,我们的贝叶斯方法优于MLE方法,尤其是当诊断检测具有高灵敏度、高特异度或两者兼具时。我们还考虑了一个实际数据示例,其中诊断检测的特异度接近1(假阳性概率接近0)。