Suppr超能文献

当前的治疗方法、它们存在的问题,以及含硫氨基酸代谢作为针对“无线粒体”原生动物寄生虫感染的新靶点。

Current therapeutics, their problems, and sulfur-containing-amino-acid metabolism as a novel target against infections by "amitochondriate" protozoan parasites.

作者信息

Ali Vahab, Nozaki Tomoyoshi

机构信息

Department of Parasitology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan.

出版信息

Clin Microbiol Rev. 2007 Jan;20(1):164-87. doi: 10.1128/CMR.00019-06.

Abstract

The "amitochondriate" protozoan parasites of humans Entamoeba histolytica, Giardia intestinalis, and Trichomonas vaginalis share many biochemical features, e.g., energy and amino acid metabolism, a spectrum of drugs for their treatment, and the occurrence of drug resistance. These parasites possess metabolic pathways that are divergent from those of their mammalian hosts and are often considered to be good targets for drug development. Sulfur-containing-amino-acid metabolism represents one such divergent metabolic pathway, namely, the cysteine biosynthetic pathway and methionine gamma-lyase-mediated catabolism of sulfur-containing amino acids, which are present in T. vaginalis and E. histolytica but absent in G. intestinalis. These pathways are potentially exploitable for development of drugs against amoebiasis and trichomoniasis. For instance, L-trifluoromethionine, which is catalyzed by methionine gamma-lyase and produces a toxic product, is effective against T. vaginalis and E. histolytica parasites in vitro and in vivo and may represent a good lead compound. In this review, we summarize the biology of these microaerophilic parasites, their clinical manifestation and epidemiology of disease, chemotherapeutics, the modes of action of representative drugs, and problems related to these drugs, including drug resistance. We further discuss our approach to exploit unique sulfur-containing-amino-acid metabolism, focusing on development of drugs against E. histolytica.

摘要

人类的“无线粒体”原生动物寄生虫,如溶组织内阿米巴、肠道贾第虫和阴道毛滴虫,具有许多生化特征,例如能量和氨基酸代谢、一系列用于治疗它们的药物以及耐药性的出现。这些寄生虫拥有与哺乳动物宿主不同的代谢途径,常被认为是药物开发的良好靶点。含硫氨基酸代谢就是这样一种不同的代谢途径,即半胱氨酸生物合成途径以及甲硫氨酸γ-裂解酶介导的含硫氨基酸分解代谢,这些途径存在于阴道毛滴虫和溶组织内阿米巴中,但在肠道贾第虫中不存在。这些途径有可能被用于开发抗阿米巴病和滴虫病的药物。例如,由甲硫氨酸γ-裂解酶催化并产生有毒产物的L-三氟甲硫氨酸,在体外和体内对阴道毛滴虫和溶组织内阿米巴寄生虫均有效,可能是一种良好的先导化合物。在本综述中,我们总结了这些微需氧寄生虫的生物学特性、它们的临床表现和疾病流行病学、化学治疗药物、代表性药物的作用方式以及与这些药物相关的问题,包括耐药性。我们还进一步讨论了利用独特的含硫氨基酸代谢的方法,重点是开发抗溶组织内阿米巴的药物。

相似文献

2
Sulfur-containing amino acid metabolism in parasitic protozoa.
Adv Parasitol. 2005;60:1-99. doi: 10.1016/S0065-308X(05)60001-2.
3
Parasite sulphur amino acid metabolism.
Int J Parasitol. 1997 Aug;27(8):883-97. doi: 10.1016/s0020-7519(97)00039-8.
5
Analysis of Potential Drug Targets for Protozoan Infections.
Med Chem. 2022;19(1):91-98. doi: 10.2174/1573406418666220816121912.
7
Polyamine metabolism as chemotherapeutic target in protozoan parasites.
Mini Rev Med Chem. 2002 Dec;2(6):553-63. doi: 10.2174/1389557023405549.
9
Targeting polyamines of parasitic protozoa in chemotherapy.
Trends Parasitol. 2001 May;17(5):242-9. doi: 10.1016/s1471-4922(01)01908-0.

引用本文的文献

1
Identification of Small Molecule Inhibitors Targeting Phosphoserine Phosphatase: A Novel Target for the Development of Antiamoebic Drugs.
ACS Omega. 2024 Jun 17;9(26):27906-27918. doi: 10.1021/acsomega.3c09439. eCollection 2024 Jul 2.
3
Defence-related metabolic changes in wheat ( L.) seedlings in response to infection by f. sp. .
Front Plant Sci. 2023 Jun 12;14:1166813. doi: 10.3389/fpls.2023.1166813. eCollection 2023.
4
Transcriptional profile of Trichomonas vaginalis in response to metronidazole.
BMC Genomics. 2023 Jun 12;24(1):318. doi: 10.1186/s12864-023-09339-9.
5
Pathogenicity and virulence of , the agent of amoebiasis.
Virulence. 2023 Dec;14(1):2158656. doi: 10.1080/21505594.2022.2158656.
6
Unusual Cell Structures and Organelles in and Are Potential Drug Targets.
Microorganisms. 2022 Nov 2;10(11):2176. doi: 10.3390/microorganisms10112176.
7
Pharmacology, Toxicology, and Metabolism of Sennoside A, A Medicinal Plant-Derived Natural Compound.
Front Pharmacol. 2021 Oct 26;12:714586. doi: 10.3389/fphar.2021.714586. eCollection 2021.
8
Giardia duodenalis Virulence - "To Be, or Not To Be".
Curr Trop Med Rep. 2021;8(4):246-256. doi: 10.1007/s40475-021-00248-z. Epub 2021 Oct 21.
9
Bioprospecting marine actinomycetes for antileishmanial drugs: current perspectives and future prospects.
Heliyon. 2021 Aug 2;7(8):e07710. doi: 10.1016/j.heliyon.2021.e07710. eCollection 2021 Aug.
10
Anti-amebic effects of Chinese rhubarb () leaves' extract, the anthraquinone rhein and related compounds.
Heliyon. 2020 Apr 1;6(4):e03693. doi: 10.1016/j.heliyon.2020.e03693. eCollection 2020 Apr.

本文引用的文献

1
Cysteine biosynthesis in Trichomonas vaginalis involves cysteine synthase utilizing O-phosphoserine.
J Biol Chem. 2006 Sep 1;281(35):25062-75. doi: 10.1074/jbc.M600688200. Epub 2006 May 30.
2
The tree of eukaryotes.
Trends Ecol Evol. 2005 Dec;20(12):670-6. doi: 10.1016/j.tree.2005.09.005. Epub 2005 Oct 10.
3
Eukaryotic evolution, changes and challenges.
Nature. 2006 Mar 30;440(7084):623-30. doi: 10.1038/nature04546.
4
Impact of intestinal colonization and invasion on the Entamoeba histolytica transcriptome.
Mol Biochem Parasitol. 2006 Jun;147(2):163-76. doi: 10.1016/j.molbiopara.2006.02.007. Epub 2006 Mar 7.
5
Niche metabolism in parasitic protozoa.
Philos Trans R Soc Lond B Biol Sci. 2006 Jan 29;361(1465):101-18. doi: 10.1098/rstb.2005.1756.
6
Giardia and Cryptosporidium join the 'Neglected Diseases Initiative'.
Trends Parasitol. 2006 May;22(5):203-8. doi: 10.1016/j.pt.2006.02.015. Epub 2006 Mar 20.
7
Fe-hydrogenase maturases in the hydrogenosomes of Trichomonas vaginalis.
Eukaryot Cell. 2006 Mar;5(3):579-86. doi: 10.1128/EC.5.3.579-586.2006.
8
Synthesis, characterization and antiamoebic activity of 1-(thiazolo[4,5-b]quinoxaline-2-yl)-3-phenyl-2-pyrazoline derivatives.
Bioorg Med Chem Lett. 2006 May 15;16(10):2812-6. doi: 10.1016/j.bmcl.2006.01.116. Epub 2006 Feb 21.
10
Diversity of clinical isolates of Entamoeba histolytica in Japan.
Arch Med Res. 2006 Feb;37(2):277-9. doi: 10.1016/j.arcmed.2005.09.010.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验