Suppr超能文献

关于差异度量在k-模式聚类算法中的影响。

On the impact of dissimilarity measure in k-modes clustering algorithm.

作者信息

Ng Michael K, Li Mark Junjie, Huang Joshua Zhexue, He Zengyou

机构信息

Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2007 Mar;29(3):503-7. doi: 10.1109/TPAMI.2007.53.

Abstract

This correspondence describes extensions to the k-modes algorithm for clustering categorical data. By modifying a simple matching dissimilarity measure for categorical objects, a heuristic approach was developed in [4], [12] which allows the use of the k-modes paradigm to obtain a cluster with strong intrasimilarity and to efficiently cluster large categorical data sets. The main aim of this paper is to rigorously derive the updating formula of the k-modes clustering algorithm with the new dissimilarity measure and the convergence of the algorithm under the optimization framework.

摘要

本通信描述了用于对分类数据进行聚类的k-模式算法的扩展。通过修改用于分类对象的简单匹配差异度量,在[4]、[12]中开发了一种启发式方法,该方法允许使用k-模式范式来获得具有强内部相似性的聚类,并有效地对大型分类数据集进行聚类。本文的主要目的是在优化框架下,严格推导具有新差异度量的k-模式聚类算法的更新公式以及该算法的收敛性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验