Fortner Kevin C, Laitar David S, Muldoon John, Pu Lihung, Braun-Sand Sonja B, Wiest Olaf, Brown Seth N
Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana 46556-5670, USA.
J Am Chem Soc. 2007 Jan 24;129(3):588-600. doi: 10.1021/ja065713h.
Oxotrimesityliridium(V), (mes)3Ir=O (mes = 2,4,6-trimethylphenyl), and trimesityliridium(III), (mes)3Ir, undergo extremely rapid degenerate intermetal oxygen atom transfer at room temperature. At low temperatures, the two complexes conproportionate to form (mes)3Ir-O-Ir(mes)3, the 2,6-dimethylphenyl analogue of which has been characterized crystallographically. Variable-temperature NMR measurements of the rate of dissociation of the mu-oxo dimer combined with measurements of the conproportionation equilibrium by low-temperature optical spectroscopy indicate that oxygen atom exchange between iridium(V) and iridium(III) occurs with a rate constant, extrapolated to 20 degrees C, of 5 x 107 M-1 s-1. The oxotris(imido)osmium(VIII) complex (ArN)3Os=O (Ar = 2,6-diisopropylphenyl) also undergoes degenerate intermetal atom transfer to its deoxy partner, (ArN)3Os. However, despite the fact that its metal-oxygen bond strength and reactivity toward triphenylphosphine are nearly identical to those of (mes)3Ir=O, the osmium complex (ArN)3Os=O transfers its oxygen atom 12 orders of magnitude more slowly to (ArN)3Os than (mes)3Ir=O does to (mes)3Ir (kOsOs = 1.8 x 10-5 M-1 s-1 at 20 degrees C). Iridium-osmium cross-exchange takes place at an intermediate rate, in quantitative agreement with a Marcus-type cross relation. The enormous difference between the iridium-iridium and osmium-osmium exchange rates can be rationalized by an analogue of the inner-sphere reorganization energy. Both Ir(III) and Ir(V) are pyramidal and can form pyramidal iridium(IV) with little energetic cost in an orbitally allowed linear approach. Conversely, pyramidalization of the planar tris(imido)osmium(VI) fragment requires placing a pair of electrons in an antibonding orbital. The unique propensity of (mes)3Ir=O to undergo intermetal oxygen atom transfer allows it to serve as an activator of dioxygen in cocatalyzed oxidations, for example, acting with osmium tetroxide to catalyze the aerobic dihydroxylation of monosubstituted olefins and selective oxidation of allyl and benzyl alcohols.
氧代三甲基苯基铱(V),(mes)3Ir=O(mes = 2,4,6 - 三甲基苯基)和三甲基苯基铱(III),(mes)3Ir,在室温下会发生极快速的简并金属间氧原子转移。在低温下,这两种配合物发生归中反应形成(mes)3Ir - O - Ir(mes)3,其2,6 - 二甲基苯基类似物已通过晶体学表征。通过变温核磁共振测量μ - 氧二聚体的解离速率,并结合低温光谱测量归中平衡,结果表明铱(V)和铱(III)之间的氧原子交换速率常数(外推至20℃)为5×107 M-1 s-1。氧代三(亚氨基)锇(VIII)配合物(ArN)3Os=O(Ar = 2,6 - 二异丙基苯基)也会发生简并金属间原子转移生成其脱氧形式(ArN)3Os。然而,尽管其金属 - 氧键强度以及对三苯基膦的反应性与(mes)3Ir=O几乎相同,但锇配合物(ArN)3Os=O将氧原子转移至(ArN)3Os的速度比(mes)3Ir=O将氧原子转移至(mes)3Ir的速度慢12个数量级(20℃时kOsOs = 1.8×10-5 M-1 s-1)。铱 - 锇交叉交换以中等速率发生,这与马库斯型交叉关系在定量上相符。铱 - 铱和锇 - 锇交换速率的巨大差异可以通过内球体重组能的类似物来解释。Ir(III)和Ir(V)都是金字塔形的,并且在轨道允许的线性方法中,只需很少的能量代价就能形成金字塔形的铱(IV)。相反,平面三(亚氨基)锇(VI)片段的金字塔化需要将一对电子置于反键轨道中。(mes)3Ir=O独特的进行金属间氧原子转移的倾向使其能够在共催化氧化反应中作为双氧的活化剂,例如,与四氧化锇一起作用催化单取代烯烃的需氧二羟基化反应以及烯丙醇和苄醇的选择性氧化反应。