Qiu Jian, Hue Martial, Ben-Hur Asa, Vert Jean-Philippe, Noble William Stafford
Department of Genome Sciences, University of Washington, Seattle, WA, USA.
Bioinformatics. 2007 May 1;23(9):1090-8. doi: 10.1093/bioinformatics/btl642. Epub 2007 Jan 18.
This work aims to develop computational methods to annotate protein structures in an automated fashion. We employ a support vector machine (SVM) classifier to map from a given class of structures to their corresponding structural (SCOP) or functional (Gene Ontology) annotation. In particular, we build upon recent work describing various kernels for protein structures, where a kernel is a similarity function that the classifier uses to compare pairs of structures.
We describe a kernel that is derived in a straightforward fashion from an existing structural alignment program, MAMMOTH. We find in our benchmark experiments that this kernel significantly out-performs a variety of other kernels, including several previously described kernels. Furthermore, in both benchmarks, classifying structures using MAMMOTH alone does not work as well as using an SVM with the MAMMOTH kernel.
这项工作旨在开发以自动化方式注释蛋白质结构的计算方法。我们使用支持向量机(SVM)分类器,将给定的结构类别映射到其相应的结构(SCOP)或功能(基因本体论)注释。特别是,我们基于最近描述的用于蛋白质结构的各种核的工作,其中核是分类器用于比较结构对的相似性函数。
我们描述了一种直接从现有结构比对程序MAMMOTH派生的核。我们在基准实验中发现,该核显著优于多种其他核,包括几个先前描述的核。此外,在两个基准测试中,仅使用MAMMOTH对结构进行分类的效果不如使用带有MAMMOTH核的支持向量机。