Suppr超能文献

使用人工神经网络预测儿科急诊科的住院情况。

Predicting hospital admission in a pediatric Emergency Department using an Artificial Neural Network.

作者信息

Leegon Jeffrey, Jones Ian, Lanaghan Kevin, Aronsky Dominik

机构信息

Dept. of Informatics, University of Edinburgh, Edinburgh, UK.

出版信息

AMIA Annu Symp Proc. 2006;2006:1004.

Abstract

Hospital admission delays in the Emergency Department (ED) reduce capacity and contribute to the ED's diversion problem. We evaluated the accuracy of an Artificial Neural Network for the early prediction of hospital admission using data from 43,077 pediatric ED encounters. We used 9 variables commonly available in the ED setting. The area under the receiver operating characteristic curve was 0.897 (95% CI: 0.887-0.896). The instrument demonstrated high accuracy and may be used to alert clinicians to initiate admission processes earlier during a patient's ED encounter.

摘要

急诊科的住院延迟会降低容量,并导致急诊科的分流问题。我们使用来自43077例儿科急诊科就诊的数据,评估了用于早期预测住院的人工神经网络的准确性。我们使用了急诊科常见的9个变量。受试者工作特征曲线下面积为0.897(95%置信区间:0.887 - 0.896)。该工具显示出较高的准确性,可用于提醒临床医生在患者急诊科就诊期间更早地启动住院流程。

相似文献

5
Prediction of Emergency Department Hospital Admission Based on Natural Language Processing and Neural Networks.
Methods Inf Med. 2017 Oct 26;56(5):377-389. doi: 10.3414/ME17-01-0024. Epub 2017 Aug 16.
6
Validity of different pediatric early warning scores in the emergency department.
Pediatrics. 2013 Oct;132(4):e841-50. doi: 10.1542/peds.2012-3594. Epub 2013 Sep 9.
7
Prediction of admission in pediatric emergency department with deep neural networks and triage textual data.
Neural Netw. 2020 Jun;126:170-177. doi: 10.1016/j.neunet.2020.03.012. Epub 2020 Mar 18.
9
Predicting emergency department inpatient admissions to improve same-day patient flow.
Acad Emerg Med. 2012 Sep;19(9):E1045-54. doi: 10.1111/j.1553-2712.2012.01435.x.
10
Applying artificial neural networks to predict communication risks in the emergency department.
J Adv Nurs. 2015 Oct;71(10):2293-304. doi: 10.1111/jan.12691. Epub 2015 May 25.

引用本文的文献

2
Perspectives on AI use in medicine: views of the Italian Society of Artificial Intelligence in Medicine.
J Prev Med Hyg. 2024 Aug 31;65(2):E285-E289. doi: 10.15167/2421-4248/jpmh2024.65.2.3261. eCollection 2024 Jun.
3
Automated analysis of unstructured clinical assessments improves emergency department triage performance: A retrospective deep learning analysis.
J Am Coll Emerg Physicians Open. 2023 Jul 12;4(4):e13003. doi: 10.1002/emp2.13003. eCollection 2023 Aug.
4
Development of a low-dimensional model to predict admissions from triage at a pediatric emergency department.
J Am Coll Emerg Physicians Open. 2022 Jul 15;3(4):e12779. doi: 10.1002/emp2.12779. eCollection 2022 Aug.
5
Assessing the Generalizability of a Clinical Machine Learning Model Across Multiple Emergency Departments.
Mayo Clin Proc Innov Qual Outcomes. 2022 Apr 26;6(3):193-199. doi: 10.1016/j.mayocpiqo.2022.03.003. eCollection 2022 Jun.
8
An exhaustive review and analysis on applications of statistical forecasting in hospital emergency departments.
Health Syst (Basingstoke). 2018 Nov 19;9(4):263-284. doi: 10.1080/20476965.2018.1547348.
10
Predicting hospital admission at emergency department triage using machine learning.
PLoS One. 2018 Jul 20;13(7):e0201016. doi: 10.1371/journal.pone.0201016. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验