Eschenko Oxana, Mizumori Sheri J Y
Department of Psychology, University of Washington, Seattle, WA 98195, USA.
Neurobiol Learn Mem. 2007 May;87(4):495-509. doi: 10.1016/j.nlm.2006.09.008. Epub 2007 Jan 19.
Interactions with neocortical memory systems may facilitate flexible information processing by hippocampus. We sought direct evidence for such memory influences by recording hippocampal neural responses to a change in cognitive strategy. Well-trained rats switched (within a single recording session) between the use of place and response strategies to solve a plus maze task. Maze and extramaze environments were constant throughout testing. Place fields demonstrated (in-field) firing rate and location-based reorganization [Leutgeb, S., Leutgeb, J. K., Barnes, C. A., Moser, E. I., McNaughton, B. L., & Moser, M. B. (2005). Independent codes for spatial and episodic memory in hippocampal neuronal ensembles. Science, 309, 619-623] after a task switch, suggesting that hippocampus encoded each phase of testing as a different context, or episode. The task switch also resulted in qualitative and quantitative changes to discharge that were correlated with an animal's velocity or acceleration of movement. Thus, the effects of a strategy switch extended beyond the spatial domain, and the movement correlates were not passive reflections of the current behavioral state. To determine whether hippocampal neural responses were unique, striatal place and movement-correlated neurons were simultaneously recorded with hippocampal neurons. Striatal place and movement cells exhibited a response profile that was similar, but not identical, to that observed for hippocampus after a strategy switch. Thus, retrieval of a different memory led both neural systems to represent a different context. However, hippocampus may play a special (though not exclusive) role in flexible spatial processing since correlated firing amongst cell pairs was highest when rats successfully switched between two spatial tasks. Correlated firing by striatal cell pairs increased following any strategy switch, supporting the view that striatum codes change in reinforcement contingencies.
与新皮层记忆系统的相互作用可能有助于海马体进行灵活的信息处理。我们通过记录海马体对认知策略变化的神经反应,来寻找这种记忆影响的直接证据。训练有素的大鼠在解决十字迷宫任务时,会在(单个记录时段内)使用位置策略和反应策略之间进行切换。在整个测试过程中,迷宫和迷宫外部环境保持不变。任务切换后,位置野表现出(场内)放电率和基于位置的重组[勒特格布,S.,勒特格布,J. K.,巴恩斯,C. A.,莫泽,E. I.,麦克诺顿,B. L.,&莫泽,M. B.(2005年)。海马神经元集群中空间和情景记忆的独立编码。《科学》,309,619 - 623],这表明海马体将测试的每个阶段编码为不同的情境或事件。任务切换还导致放电在质量和数量上的变化,这些变化与动物的运动速度或加速度相关。因此,策略切换的影响超出了空间领域,并且运动相关性并非当前行为状态的被动反映。为了确定海马体神经反应是否独特,我们同时记录了纹状体位置和运动相关神经元与海马体神经元的活动。纹状体位置和运动细胞在策略切换后表现出与海马体相似但不完全相同的反应模式。因此,不同记忆的提取导致两个神经系统都代表不同的情境。然而,海马体可能在灵活的空间处理中发挥特殊(尽管不是唯一)的作用,因为当大鼠在两个空间任务之间成功切换时,细胞对之间的相关放电最高。纹状体细胞对的相关放电在任何策略切换后都会增加,这支持了纹状体编码强化意外事件变化的观点。