Meysen Sonia, Marger Laurine, Hewett Kenneth W, Jarry-Guichard Thérèse, Agarkova Irina, Chauvin Jean Paul, Perriard Jean Claude, Izumo Seigo, Gourdie Robert G, Mangoni Matteo E, Nargeot Joël, Gros Daniel, Miquerol Lucile
Institut de Biologie du Développement de Marseille-Luminy, IBDML, Université de la Méditerranée, CNRS UMR6216, Campus de Luminy, Marseille, France.
Dev Biol. 2007 Mar 15;303(2):740-53. doi: 10.1016/j.ydbio.2006.12.044. Epub 2006 Dec 23.
The ventricular conduction system is responsible for rapid propagation of electrical activity to coordinate ventricular contraction. To investigate the role of the transcription factor Nkx2.5 in the morphogenesis of the ventricular conduction system, we crossed Nkx2.5(+/-) mice with Cx40(eGFP/+) mice in which eGFP expression permits visualization of the His-Purkinje conduction system. Major anatomical and functional disturbances were detected in the His-Purkinje system of adult Nkx2.5(+/-)/Cx40(eGFP/+) mice, including hypoplasia of eGFP-positive Purkinje fibers and the disorganization of the Purkinje fiber network in the ventricular apex. Although the action potential properties of the individual eGFP-positive cells were normal, the deficiency of Purkinje fibers in Nkx2.5 haploinsufficient mice was associated with abnormalities of ventricular electrical activation, including slowed and decremented conduction along the left bundle branch. During embryonic development, eGFP expression in the ventricular trabeculae of Nkx2.5(+/-) hearts was qualitatively normal, with a measurable deficiency in eGFP-positive cells being observed only after birth. Chimeric analyses showed that maximal Nkx2.5 levels are required cell-autonomously. Reduced Nkx2.5 levels are associated with a delay in cell cycle withdrawal in surrounding GFP-negative myocytes. Our results suggest that the formation of the peripheral conduction system is time- and dose-dependent on the transcription factor Nkx2.5 that is cell-autonomously required for the postnatal differentiation of Purkinje fibers.
心室传导系统负责电活动的快速传播,以协调心室收缩。为了研究转录因子Nkx2.5在心室传导系统形态发生中的作用,我们将Nkx2.5(+/-)小鼠与Cx40(eGFP/+)小鼠杂交,在Cx40(eGFP/+)小鼠中,eGFP表达可使希氏-浦肯野传导系统可视化。在成年Nkx2.5(+/-)/Cx40(eGFP/+)小鼠的希氏-浦肯野系统中检测到主要的解剖和功能紊乱,包括eGFP阳性浦肯野纤维发育不全以及心室尖部浦肯野纤维网络紊乱。尽管单个eGFP阳性细胞的动作电位特性正常,但Nkx2.5单倍体不足小鼠中浦肯野纤维的缺乏与心室电激活异常有关,包括沿左束支的传导减慢和递减。在胚胎发育过程中,Nkx2.5(+/-)心脏心室小梁中的eGFP表达在质量上是正常的,仅在出生后才观察到eGFP阳性细胞有可测量到的缺乏。嵌合体分析表明,细胞自主需要最高水平的Nkx2.5。Nkx2.5水平降低与周围GFP阴性心肌细胞的细胞周期退出延迟有关。我们的结果表明,外周传导系统的形成在时间和剂量上依赖于转录因子Nkx2.5,而Nkx2.5是浦肯野纤维出生后分化所细胞自主需要的。