Suppr超能文献

组合调控和转录因子结合位点的计算识别

Computational identification of combinatorial regulation and transcription factor binding sites.

作者信息

Ryu Taewoo, Kim Younghoon, Kim Dae-Won, Lee Doheon

机构信息

Department of BioSystems, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon, 305-701, South Korea.

出版信息

Biotechnol Bioeng. 2007 Aug 15;97(6):1594-602. doi: 10.1002/bit.21354.

Abstract

A number of computational methods have been used to unravel the core mechanisms governing the regulation of gene expression, but these techniques examine only portions of the genetic regulatory mechanism. For example, some studies have failed to include the combined action of multiple transcription factors (TFs) or the importance of TF binding constraints (i.e., the binding position and orientation), while others have examined combinations of only 2 or 3 TFs. Thus, we sought to develop a new method for identifying regulatory modules in yeast, using an algorithm that includes all combinations of TFs plus a number of binding constraints when identifying target genes. We successfully developed a computational method for using microarray and TF-DNA interaction data to identify regulatory modules. All possible combinations of yeast TFs and various binding constraints were tested to identify regulatory modules. Within the identified modules, target genes were found to have common binding constraints such as fixed binding regions and orientations for each TF. Moreover, targets showed similar mRNA expression profiles and high functional coherence. Our novel approach, which accounts for both combined actions of TFs and their binding constraints, can be used to identify target genes and reliably predict regulatory modules over a broad range of functional categories. Complete results and additional information are available online at http://bisl. kaist.ac.kr/~dhlee/comModule/index.html.

摘要

许多计算方法已被用于揭示基因表达调控的核心机制,但这些技术仅研究了遗传调控机制的一部分。例如,一些研究没有考虑多个转录因子(TF)的联合作用或TF结合限制(即结合位置和方向)的重要性,而其他研究仅研究了2个或3个TF的组合。因此,我们试图开发一种新方法来识别酵母中的调控模块,该方法使用一种算法,在识别靶基因时包括TF的所有组合以及一些结合限制。我们成功开发了一种利用微阵列和TF-DNA相互作用数据来识别调控模块的计算方法。测试了酵母TF与各种结合限制的所有可能组合以识别调控模块。在识别出的模块中,发现靶基因具有共同的结合限制,例如每个TF具有固定的结合区域和方向。此外,靶标显示出相似的mRNA表达谱和高度功能一致性。我们的新方法考虑了TF的联合作用及其结合限制,可用于识别靶基因,并在广泛的功能类别中可靠地预测调控模块。完整结果和其他信息可在http://bisl.kaist.ac.kr/~dhlee/comModule/index.html在线获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验