Shaikh-Mohammed Javeed, DeCoster Mark A, McShane Michael J
Inst. of Micromanuf., Louisiana State Univ., Ruston, LA, USA.
Conf Proc IEEE Eng Med Biol Soc. 2004;2004:2671-4. doi: 10.1109/IEMBS.2004.1403767.
Methods for producing biomaterial patterns with defined spatial distribution micro- and nano-scale features are important for studying the cellular-level interactions, including basic cell-to-material and cell-to-cell communications. This work reports on the fabrication of substrates to study cell adhesion to multicomponent micropatterns of multilayer films by coupling conventional photolithography and LbL techniques, known as the L-LbL technique. Toward this end, substrates with nanofilm micropatterns of two different bio-functionalities have been fabricated for sPLA/sub 2/ and PLL and were used for in vitro cell-culture studies using neurons, which exhibited preferential and high efficiency and selective adhesion to sPLA/sub 2/ nanofilms. These results support the immediate use of multicomponent micropatterns as biological testbeds for basic studies of cells, and provide a basis for further expansions of the fabrication processes to produce scaffolds for precise definition of cell-to-material and cell-to-cell interactions, such that the resulting constructs mimic in vivo cell organization and behavior.
制备具有特定空间分布的微米和纳米尺度特征的生物材料图案的方法,对于研究细胞水平的相互作用非常重要,包括基本的细胞与材料以及细胞与细胞之间的通讯。这项工作报道了通过结合传统光刻技术和层层自组装技术(即L-LbL技术)来制造用于研究细胞对多层膜多组分微图案的粘附的基底。为此,已经制造了具有两种不同生物功能的纳米膜微图案的基底,用于sPLA₂和PLL,并用于使用神经元的体外细胞培养研究,神经元对sPLA₂纳米膜表现出优先、高效和选择性的粘附。这些结果支持将多组分微图案立即用作细胞基础研究的生物试验台,并为进一步扩展制造工艺以生产用于精确定义细胞与材料以及细胞与细胞相互作用的支架提供了基础,从而使所得构建体模拟体内细胞组织和行为。