Suppr超能文献

使用基于运动皮层集群的神经接口系统对四肢瘫痪患者进行辅助技术和机器人控制。

Assistive technology and robotic control using motor cortex ensemble-based neural interface systems in humans with tetraplegia.

作者信息

Donoghue John P, Nurmikko Arto, Black Michael, Hochberg Leigh R

机构信息

Department of Neuroscience, Division of Engineering, Department of Computer Science, Brown University, Providence, RI 02912, USA.

出版信息

J Physiol. 2007 Mar 15;579(Pt 3):603-11. doi: 10.1113/jphysiol.2006.127209. Epub 2007 Feb 1.

Abstract

This review describes the rationale, early stage development, and initial human application of neural interface systems (NISs) for humans with paralysis. NISs are emerging medical devices designed to allow persons with paralysis to operate assistive technologies or to reanimate muscles based upon a command signal that is obtained directly from the brain. Such systems require the development of sensors to detect brain signals, decoders to transform neural activity signals into a useful command, and an interface for the user. We review initial pilot trial results of an NIS that is based on an intracortical microelectrode sensor that derives control signals from the motor cortex. We review recent findings showing, first, that neurons engaged by movement intentions persist in motor cortex years after injury or disease to the motor system, and second, that signals derived from motor cortex can be used by persons with paralysis to operate a range of devices. We suggest that, with further development, this form of NIS holds promise as a useful new neurotechnology for those with limited motor function or communication. We also discuss the additional potential for neural sensors to be used in the diagnosis and management of various neurological conditions and as a new way to learn about human brain function.

摘要

本综述描述了用于瘫痪患者的神经接口系统(NIS)的基本原理、早期开发及首次人体应用。NIS是一种新兴的医疗设备,旨在让瘫痪患者根据直接从大脑获取的指令信号来操作辅助技术或使肌肉恢复活动。此类系统需要开发用于检测脑信号的传感器、将神经活动信号转换为有用指令的解码器以及供用户使用的接口。我们回顾了一种基于皮层内微电极传感器的NIS的初步试点试验结果,该传感器从运动皮层获取控制信号。我们回顾了近期的研究发现,首先,运动意图所激活的神经元在运动系统受到损伤或疾病影响多年后仍存在于运动皮层中;其次,瘫痪患者可以利用源自运动皮层的信号来操作一系列设备。我们认为,随着进一步发展,这种形式的NIS有望成为一种对运动功能或沟通能力受限者有用的新型神经技术。我们还讨论了神经传感器在各种神经系统疾病的诊断和管理中以及作为了解人类脑功能的新途径的额外潜力。

相似文献

1
Assistive technology and robotic control using motor cortex ensemble-based neural interface systems in humans with tetraplegia.
J Physiol. 2007 Mar 15;579(Pt 3):603-11. doi: 10.1113/jphysiol.2006.127209. Epub 2007 Feb 1.
2
Neuronal ensemble control of prosthetic devices by a human with tetraplegia.
Nature. 2006 Jul 13;442(7099):164-71. doi: 10.1038/nature04970.
3
Bridging the brain to the world: a perspective on neural interface systems.
Neuron. 2008 Nov 6;60(3):511-21. doi: 10.1016/j.neuron.2008.10.037.
4
Reach and grasp by people with tetraplegia using a neurally controlled robotic arm.
Nature. 2012 May 16;485(7398):372-5. doi: 10.1038/nature11076.
5
Assessment of brain-machine interfaces from the perspective of people with paralysis.
J Neural Eng. 2015 Aug;12(4):043002. doi: 10.1088/1741-2560/12/4/043002. Epub 2015 Jul 14.
6
Connecting cortex to machines: recent advances in brain interfaces.
Nat Neurosci. 2002 Nov;5 Suppl:1085-8. doi: 10.1038/nn947.
8
Real-world applications for brain-computer interface technology.
IEEE Trans Neural Syst Rehabil Eng. 2003 Jun;11(2):162-5. doi: 10.1109/TNSRE.2003.814433.
9
Continuous neuronal ensemble control of simulated arm reaching by a human with tetraplegia.
J Neural Eng. 2011 Jun;8(3):034003. doi: 10.1088/1741-2560/8/3/034003. Epub 2011 May 5.
10
Brain-controlled interfaces: movement restoration with neural prosthetics.
Neuron. 2006 Oct 5;52(1):205-20. doi: 10.1016/j.neuron.2006.09.019.

引用本文的文献

1
Neural signal analysis in chronic stroke: advancing intracortical brain-computer interface design.
Front Hum Neurosci. 2025 Feb 21;19:1544397. doi: 10.3389/fnhum.2025.1544397. eCollection 2025.
2
3
Bridging the gap: a translational perspective in spinal cord injury.
Exp Biol Med (Maywood). 2024 Sep 26;249:10266. doi: 10.3389/ebm.2024.10266. eCollection 2024.
4
Editorial: Novel technologies targeting the rehabilitation of neurological disorders.
Front Neurosci. 2024 Mar 26;18:1367286. doi: 10.3389/fnins.2024.1367286. eCollection 2024.
5
Artificial physics engine for real-time inverse dynamics of arm and hand movement.
PLoS One. 2023 Dec 13;18(12):e0295750. doi: 10.1371/journal.pone.0295750. eCollection 2023.
6
Review on brain-computer interface technologies in healthcare.
Biophys Rev. 2023 Sep 14;15(5):1351-1358. doi: 10.1007/s12551-023-01138-6. eCollection 2023 Oct.
8
Activation of inflammasomes and their effects on neuroinflammation at the microelectrode-tissue interface in intracortical implants.
Biomaterials. 2023 Jun;297:122102. doi: 10.1016/j.biomaterials.2023.122102. Epub 2023 Mar 28.
9
Modulating Brain Activity with Invasive Brain-Computer Interface: A Narrative Review.
Brain Sci. 2023 Jan 12;13(1):134. doi: 10.3390/brainsci13010134.

本文引用的文献

1
Brain-computer interfaces as new brain output pathways.
J Physiol. 2007 Mar 15;579(Pt 3):613-9. doi: 10.1113/jphysiol.2006.125948. Epub 2007 Jan 25.
2
Comparison of recordings from microelectrode arrays and single electrodes in the visual cortex.
J Neurosci. 2007 Jan 10;27(2):261-4. doi: 10.1523/JNEUROSCI.4906-06.2007.
3
A comparison of classification techniques for the P300 Speller.
J Neural Eng. 2006 Dec;3(4):299-305. doi: 10.1088/1741-2560/3/4/007. Epub 2006 Oct 26.
4
A P300 event-related potential brain-computer interface (BCI): the effects of matrix size and inter stimulus interval on performance.
Biol Psychol. 2006 Oct;73(3):242-52. doi: 10.1016/j.biopsycho.2006.04.007. Epub 2006 Jul 24.
5
A high-performance brain-computer interface.
Nature. 2006 Jul 13;442(7099):195-8. doi: 10.1038/nature04968.
6
Neuronal ensemble control of prosthetic devices by a human with tetraplegia.
Nature. 2006 Jul 13;442(7099):164-71. doi: 10.1038/nature04970.
7
The emerging world of motor neuroprosthetics: a neurosurgical perspective.
Neurosurgery. 2006 Jul;59(1):1-14; discussion 1-14. doi: 10.1227/01.NEU.0000221506.06947.AC.
8
Brain stimulation for epilepsy: can scheduled or responsive neurostimulation stop seizures?
Curr Opin Neurol. 2006 Apr;19(2):164-8. doi: 10.1097/01.wco.0000218233.60217.84.
9
Functional imaging of mood and anxiety disorders.
J Neuroimaging. 2006 Jan;16(1):1-10. doi: 10.1177/1051228405001474.
10
Reliability of signals from a chronically implanted, silicon-based electrode array in non-human primate primary motor cortex.
IEEE Trans Neural Syst Rehabil Eng. 2005 Dec;13(4):524-41. doi: 10.1109/TNSRE.2005.857687.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验