Li Yi-Ou, Adali Tülay, Calhoun Vince D
Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, Baltimore, Maryland 21250, USA.
Hum Brain Mapp. 2007 Nov;28(11):1251-66. doi: 10.1002/hbm.20359.
Multivariate analysis methods such as independent component analysis (ICA) have been applied to the analysis of functional magnetic resonance imaging (fMRI) data to study brain function. Because of the high dimensionality and high noise level of the fMRI data, order selection, i.e., estimation of the number of informative components, is critical to reduce over/underfitting in such methods. Dependence among fMRI data samples in the spatial and temporal domain limits the usefulness of the practical formulations of information-theoretic criteria (ITC) for order selection, since they are based on likelihood of independent and identically distributed (i.i.d.) data samples. To address this issue, we propose a subsampling scheme to obtain a set of effectively i.i.d. samples from the dependent data samples and apply the ITC formulas to the effectively i.i.d. sample set for order selection. We apply the proposed method on the simulated data and show that it significantly improves the accuracy of order selection from dependent data. We also perform order selection on fMRI data from a visuomotor task and show that the proposed method alleviates the over-estimation on the number of brain sources due to the intrinsic smoothness and the smooth preprocessing of fMRI data. We use the software package ICASSO (Himberg et al. [ 2004]: Neuroimage 22:1214-1222) to analyze the independent component (IC) estimates at different orders and show that, when ICA is performed at overestimated orders, the stability of the IC estimates decreases and the estimation of task related brain activations show degradation.
诸如独立成分分析(ICA)之类的多变量分析方法已被应用于功能磁共振成像(fMRI)数据的分析,以研究脑功能。由于fMRI数据的高维度和高噪声水平,阶数选择,即估计信息成分的数量,对于减少此类方法中的过拟合/欠拟合至关重要。fMRI数据样本在空间和时间域中的依赖性限制了信息论准则(ITC)实际公式用于阶数选择的有效性,因为它们基于独立同分布(i.i.d.)数据样本的似然性。为了解决这个问题,我们提出了一种子采样方案,以从相关数据样本中获得一组有效的i.i.d.样本,并将ITC公式应用于有效的i.i.d.样本集进行阶数选择。我们将所提出的方法应用于模拟数据,并表明它显著提高了从相关数据中进行阶数选择的准确性。我们还对来自视觉运动任务的fMRI数据进行阶数选择,并表明所提出的方法减轻了由于fMRI数据的固有平滑性和预处理平滑性而导致的脑源数量的过度估计。我们使用软件包ICASSO(Himberg等人,[2004]:《神经图像》22:1214 - 1222)来分析不同阶数下的独立成分(IC)估计,并表明,当在高估的阶数下进行ICA时,IC估计的稳定性会降低,并且与任务相关的脑激活估计会出现退化。