Gao Hong, Coyle Donna L, Meyer-Ficca Mirella L, Meyer Ralph G, Jacobson Elaine L, Wang Zhao-Qi, Jacobson Myron K
Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Room 3985 Arizona Cancer Center, 1515 North Campbell Avenue, Tucson, AZ 85724, USA.
Exp Cell Res. 2007 Mar 10;313(5):984-96. doi: 10.1016/j.yexcr.2006.12.025. Epub 2007 Jan 10.
Genotoxic stress activates nuclear poly(ADP-ribose) (PAR) metabolism leading to PAR synthesis catalyzed by DNA damage activated poly(ADP-ribose) polymerases (PARPs) and rapid PAR turnover by action of nuclear poly(ADP-ribose) glycohydrolase (PARG). The involvement of PARP-1 and PARP-2 in responses to DNA damage has been well studied but the involvement of nuclear PARG is less well understood. To gain insights into the function of nuclear PARG in DNA damage responses, we have quantitatively studied PAR metabolism in cells derived from a hypomorphic mutant mouse model in which exons 2 and 3 of the PARG gene have been deleted (PARG-Delta2,3 cells), resulting in a nuclear PARG containing a catalytic domain but lacking the N-terminal region (A domain) of the protein. Following DNA damage induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), we found that the activity of both PARG and PARPs in intact cells is increased in PARG-Delta2,3 cells. The increased PARG activity leads to decreased PARP-1 automodification with resulting increased PARP activity. The degree of PARG activation is greater than PARP, resulting in decreased PAR accumulation. Following MNNG treatment, PARG-Delta2,3 cells show reduced formation of XRCC1 foci, delayed H2AX phosphorylation, decreased DNA break intermediates during repair, and increased cell death. Our results show that a precise coordination of PARPs and PARG activities is important for normal cellular responses to DNA damage and that this coordination is defective in the absence of the PARG A domain.
基因毒性应激激活细胞核多聚(ADP - 核糖)(PAR)代谢,导致由DNA损伤激活的多聚(ADP - 核糖)聚合酶(PARP)催化PAR合成,并通过细胞核多聚(ADP - 核糖)糖苷水解酶(PARG)的作用实现PAR的快速周转。PARP - 1和PARP - 2在DNA损伤反应中的作用已得到充分研究,但细胞核PARG的作用尚不太清楚。为了深入了解细胞核PARG在DNA损伤反应中的功能,我们定量研究了来自低表达突变小鼠模型的细胞中的PAR代谢,该模型中PARG基因的外显子2和3已被删除(PARG - Δ2,3细胞),导致细胞核PARG含有催化结构域但缺乏该蛋白的N端区域(A结构域)。在用N - 甲基 - N'-硝基 - N - 亚硝基胍(MNNG)诱导DNA损伤后,我们发现完整细胞中PARG和PARP的活性在PARG - Δ2,3细胞中均增加。PARG活性增加导致PARP - 1自身修饰减少,从而使PARP活性增加。PARG的激活程度大于PARP,导致PAR积累减少。MNNG处理后,PARG - Δ2,3细胞显示XRCC1焦点形成减少、H2AX磷酸化延迟、修复过程中DNA断裂中间体减少以及细胞死亡增加。我们的结果表明,PARP和PARG活性的精确协调对于细胞对DNA损伤的正常反应很重要,并且在没有PARG A结构域的情况下这种协调存在缺陷。