Lin H, Ruiz-Correa S, Shapiro L G, Hing A, Cunningham M L, Speltz M, Sze R
Department of Biomedical and Health Informatics, University of Washington.
Conf Proc IEEE Eng Med Biol Soc. 2005;2005:6325-31. doi: 10.1109/IEMBS.2005.1615944.
Craniosynostosis is a serious condition of childhood, caused by the early fusion of the sutures of the skull. The resulting abnormal skull development can lead to severe deformities, increased intra-cranial pressure, as well as vision, hearing and breathing problems. In this work we develop a novel approach to accurately classify deformations caused by metopic and isolated sagittal synostosis. Our method combines a novel set of symbolic shape descriptors and off-the-shelf classification tools to model morphological variations that characterize the synostotic skull. We demonstrate the efficacy of our methodology in a series of large-scale classification experiments that contrast the performance of our proposed symbolic descriptors to those of traditional numeric descriptors, such as clinical severity indices, Fourier-based descriptors and cranial image quantifications.
颅缝早闭是一种严重的儿童疾病,由颅骨缝线过早融合引起。由此导致的颅骨异常发育会导致严重畸形、颅内压升高以及视力、听力和呼吸问题。在这项工作中,我们开发了一种新方法,用于准确分类由额缝早闭和孤立性矢状缝早闭引起的畸形。我们的方法结合了一组新颖的符号形状描述符和现成的分类工具,以对表征颅缝早闭颅骨的形态变化进行建模。我们在一系列大规模分类实验中证明了我们方法的有效性,这些实验将我们提出的符号描述符的性能与传统数字描述符(如临床严重程度指数、基于傅里叶的描述符和颅骨图像量化)的性能进行了对比。