Bradley Elizabeth H, Curry Leslie A, Devers Kelly J
Department of Epidemiology and Public Health, Yale University School of Medicine, 60 College Street, New Haven, CT 06520-8034, USA.
Health Serv Res. 2007 Aug;42(4):1758-72. doi: 10.1111/j.1475-6773.2006.00684.x.
To provide practical strategies for conducting and evaluating analyses of qualitative data applicable for health services researchers. DATA SOURCES AND DESIGN: We draw on extant qualitative methodological literature to describe practical approaches to qualitative data analysis. Approaches to data analysis vary by discipline and analytic tradition; however, we focus on qualitative data analysis that has as a goal the generation of taxonomy, themes, and theory germane to health services research.
We describe an approach to qualitative data analysis that applies the principles of inductive reasoning while also employing predetermined code types to guide data analysis and interpretation. These code types (conceptual, relationship, perspective, participant characteristics, and setting codes) define a structure that is appropriate for generation of taxonomy, themes, and theory. Conceptual codes and subcodes facilitate the development of taxonomies. Relationship and perspective codes facilitate the development of themes and theory. Intersectional analyses with data coded for participant characteristics and setting codes can facilitate comparative analyses.
Qualitative inquiry can improve the description and explanation of complex, real-world phenomena pertinent to health services research. Greater understanding of the processes of qualitative data analysis can be helpful for health services researchers as they use these methods themselves or collaborate with qualitative researchers from a wide range of disciplines.
为健康服务研究人员提供进行和评估定性数据分析的实用策略。
我们借鉴现有的定性方法文献来描述定性数据分析的实用方法。数据分析方法因学科和分析传统而异;然而,我们专注于以生成与健康服务研究相关的分类法、主题和理论为目标的定性数据分析。
我们描述了一种定性数据分析方法,该方法应用归纳推理原则,同时采用预先确定的编码类型来指导数据分析和解释。这些编码类型(概念性、关系性、视角性、参与者特征性和情境编码)定义了一种适合生成分类法、主题和理论的结构。概念性编码和子编码有助于分类法的发展。关系性和视角性编码有助于主题和理论的发展。对编码为参与者特征和情境编码的数据进行交叉分析有助于比较分析。
定性研究可以改进对与健康服务研究相关的复杂现实世界现象的描述和解释。更好地理解定性数据分析过程对健康服务研究人员会有所帮助,因为他们自己使用这些方法或与来自广泛学科的定性研究人员合作。