Suppr超能文献

对一系列针对受体酪氨酸激酶(RTK)家族三种激酶的强效且高选择性抑制剂的三维定量构效关系(3D QSAR)研究。

3D QSAR studies on a series of potent and high selective inhibitors for three kinases of RTK family.

作者信息

Cao Hongyu, Zhang Huabei, Zheng Xuefang, Gao Dabin

机构信息

Liaoning Key Laboratory of Bio-organic Chemistry, Dalian University, Dalian 116622, China.

出版信息

J Mol Graph Model. 2007 Jul;26(1):236-45. doi: 10.1016/j.jmgm.2006.12.001. Epub 2006 Dec 8.

Abstract

For targets belonging to the same family of receptors, inhibitors often act at more than one biological target and produce a synergistic effect. Separate CoMFA and CoMSIA models were developed from our data set for the KDR, cKit and Tie-2 inhibitors. These models showed excellent internal predictability and consistency, and validation using test-set compounds yielded a good predictive power for the pIC(50) value. The field contour maps (CoMFA and CoMSIA) corresponding to the KDR, cKit and Tie-2 kinase subtypes reflected the characteristic similarities and differences between these types. These maps provided valuable information to facilitate structural modifications of the inhibitor to increase selectivity for the KDR over cKit and Tie-2.

摘要

对于属于同一受体家族的靶点,抑制剂通常作用于多个生物靶点并产生协同效应。我们从KDR、cKit和Tie-2抑制剂的数据集中开发了单独的CoMFA和CoMSIA模型。这些模型显示出出色的内部预测性和一致性,使用测试集化合物进行验证对pIC(50)值产生了良好的预测能力。与KDR、cKit和Tie-2激酶亚型相对应的场等值线图(CoMFA和CoMSIA)反映了这些类型之间的特征异同。这些图提供了有价值的信息,以促进抑制剂的结构修饰,从而提高对KDR相对于cKit和Tie-2的选择性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验