Suppr超能文献

宿主体内呈指数增长的病毒产生耐药性进化的概率。

Probability of resistance evolution for exponentially growing virus in the host.

作者信息

Haeno Hiroshi, Iwasa Yoh

机构信息

Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan.

出版信息

J Theor Biol. 2007 May 21;246(2):323-31. doi: 10.1016/j.jtbi.2007.01.009. Epub 2007 Jan 23.

Abstract

Chemotherapy for tumor and pathogenic virus often faces an emergence of resistant mutants, which may lead to medication failure. Here we study the risk of resistance to evolve in a virus population which grows exponentially. We assume that infected cells experience a "proliferation event" of virus at a random time and that the number of newly infected cells from an infected cell follows a Poisson distribution. Virus starts from a single infected cell and the virus infection is detected when the number of infected cells reaches a detection size. Initially virus is sensitive to a drug but later acquires resistance by mutations. We ask the probability that one or more cells infected with drug-resistant virus exist at the time of detection. We derive a formula for the probability of resistance and confirm its accuracy by direct computer simulations. The probability of resistance increases with detection size and mutation rate but decreases with the population growth rate of sensitive virus. The risk of resistance is smaller when more cells are newly infected by viral particles from a single infected cell if the viral growth rate is the same.

摘要

针对肿瘤和致病病毒的化疗常常面临耐药突变体的出现,这可能导致药物治疗失败。在此,我们研究在呈指数增长的病毒群体中产生耐药性的风险。我们假设受感染细胞在随机时间经历病毒的“增殖事件”,并且从一个受感染细胞新感染的细胞数量遵循泊松分布。病毒从单个受感染细胞开始,当受感染细胞数量达到检测规模时检测到病毒感染。最初病毒对药物敏感,但后来通过突变获得耐药性。我们要问在检测时存在一个或多个感染了耐药病毒的细胞的概率。我们推导出耐药概率的公式,并通过直接的计算机模拟确认其准确性。耐药概率随检测规模和突变率增加,但随敏感病毒的群体增长率降低。如果病毒生长速率相同,当更多细胞由单个受感染细胞产生的病毒颗粒新感染时,耐药风险较小。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验