Suppr超能文献

高级视觉皮层的差异发育与类别特异性识别记忆相关。

Differential development of high-level visual cortex correlates with category-specific recognition memory.

作者信息

Golarai Golijeh, Ghahremani Dara G, Whitfield-Gabrieli S, Reiss Allan, Eberhardt Jennifer L, Gabrieli John D E, Grill-Spector Kalanit

机构信息

Department of Psychology, Jordan Hall (Bldg. 420), Stanford University, Stanford, California 94305-2130, USA.

出版信息

Nat Neurosci. 2007 Apr;10(4):512-22. doi: 10.1038/nn1865. Epub 2007 Mar 11.

Abstract

High-level visual cortex in humans includes functionally defined regions that preferentially respond to objects, faces and places. It is unknown how these regions develop and whether their development relates to recognition memory. We used functional magnetic resonance imaging to examine the development of several functionally defined regions including object (lateral occipital complex, LOC)-, face ('fusiform face area', FFA; superior temporal sulcus, STS)- and place ('parahippocampal place area', PPA)-selective cortices in children (ages 7-11), adolescents (12-16) and adults. Right FFA and left PPA volumes were substantially larger in adults than in children. This development occurred by expansion of FFA and PPA into surrounding cortex and was correlated with improved recognition memory for faces and places, respectively. In contrast, LOC and STS volumes and object-recognition memory remained constant across ages. Thus, the ventral stream undergoes a prolonged maturation that varies temporally across functional regions, is determined by brain region rather than stimulus category, and is correlated with the development of category-specific recognition memory.

摘要

人类的高级视觉皮层包括功能上定义的区域,这些区域优先对物体、面孔和地点做出反应。目前尚不清楚这些区域是如何发育的,以及它们的发育是否与识别记忆有关。我们使用功能磁共振成像来研究几个功能上定义的区域的发育情况,这些区域包括儿童(7至11岁)、青少年(12至16岁)和成年人的物体(外侧枕叶复合体,LOC)、面孔(梭状面孔区,FFA;颞上沟,STS)和地点(海马旁地点区,PPA)选择性皮层。成年人右侧FFA和左侧PPA的体积明显大于儿童。这种发育是通过FFA和PPA向周围皮层扩展而发生的,并且分别与面孔和地点的识别记忆改善相关。相比之下,LOC和STS的体积以及物体识别记忆在不同年龄段保持不变。因此,腹侧流经历了一个漫长的成熟过程,这个过程在不同功能区域随时间变化,由脑区而非刺激类别决定,并且与特定类别的识别记忆的发展相关。

相似文献

1
Differential development of high-level visual cortex correlates with category-specific recognition memory.
Nat Neurosci. 2007 Apr;10(4):512-22. doi: 10.1038/nn1865. Epub 2007 Mar 11.
2
Category-specific organization of prefrontal response-facilitation during priming.
Neuropsychologia. 2006;44(10):1765-76. doi: 10.1016/j.neuropsychologia.2006.03.019. Epub 2006 May 15.
3
Regulation of brain activity in the fusiform face and parahippocampal place areas in 7-11-year-old children.
Brain Cogn. 2013 Mar;81(2):203-14. doi: 10.1016/j.bandc.2012.11.003. Epub 2012 Dec 20.
5
Extrastriate cortex and medial temporal lobe regions respond differentially to visual feature overlap within preferred stimulus category.
Neuropsychologia. 2012 Nov;50(13):3053-61. doi: 10.1016/j.neuropsychologia.2012.07.006. Epub 2012 Jul 20.
6
Temporal limitations in object processing across the human ventral visual pathway.
J Neurophysiol. 2007 Jul;98(1):382-93. doi: 10.1152/jn.00568.2006. Epub 2007 May 9.
9
Development of Neural Sensitivity to Face Identity Correlates with Perceptual Discriminability.
J Neurosci. 2016 Oct 19;36(42):10893-10907. doi: 10.1523/JNEUROSCI.1886-16.2016.
10
The encoding of category-specific versus nonspecific information in human inferior temporal cortex.
Neuroimage. 2015 Aug 1;116:240-7. doi: 10.1016/j.neuroimage.2015.04.006. Epub 2015 Apr 11.

引用本文的文献

2
Intrinsic Functional Connectivity Patterns of The Object-Selective Visual Areas.
Noro Psikiyatr Ars. 2025 Jun 8;62(2):100-108. doi: 10.29399/npa.28795. eCollection 2025.
3
Neural Maturity of Encoding States Supports Gains to Memory Precision in Childhood.
Child Dev. 2025 Jun 27;96(5):1852-61. doi: 10.1111/cdev.70003.
4
Timing of eye removal influences low-vision quality of life and self-perception of facial appearance in people with one eye.
PLoS One. 2025 May 15;20(5):e0323603. doi: 10.1371/journal.pone.0323603. eCollection 2025.
5
Task-Switch Related Reductions in Neural Distinctiveness in Children and Adults: Commonalities and Differences.
J Neurosci. 2025 Jun 25;45(26):e2358232025. doi: 10.1523/JNEUROSCI.2358-23.2025.
6
Ultra-high resolution imaging of laminar thickness in face-selective cortex in autism.
Cogn Affect Behav Neurosci. 2025 Apr 30. doi: 10.3758/s13415-025-01298-w.
8
Gyral crowns contribute to the cortical infrastructure of human face processing.
bioRxiv. 2025 Mar 21:2025.03.20.644439. doi: 10.1101/2025.03.20.644439.
9
Intersubject neural similarity reveals the development trajectory of recognition memory in children.
Dev Cogn Neurosci. 2025 Mar 18;73:101553. doi: 10.1016/j.dcn.2025.101553.

本文引用的文献

1
What makes faces special?
Vision Res. 2006 Oct;46(22):3802-11. doi: 10.1016/j.visres.2006.06.017. Epub 2006 Aug 30.
2
High-resolution imaging reveals highly selective nonface clusters in the fusiform face area.
Nat Neurosci. 2006 Sep;9(9):1177-85. doi: 10.1038/nn1745. Epub 2006 Aug 6.
4
An own-age bias in face recognition for children and older adults.
Psychon Bull Rev. 2005 Dec;12(6):1043-7. doi: 10.3758/bf03206441.
5
A neural system for learning about object function.
Cereb Cortex. 2007 Mar;17(3):513-21. doi: 10.1093/cercor/bhj176. Epub 2006 Mar 31.
6
Cortical correlates of face and scene inversion: a comparison.
Neuropsychologia. 2006;44(7):1145-58. doi: 10.1016/j.neuropsychologia.2005.10.009. Epub 2005 Nov 21.
7
Brain activation during face perception: evidence of a developmental change.
J Cogn Neurosci. 2005 Feb;17(2):308-19. doi: 10.1162/0898929053124884.
8
Breath holding reveals differences in fMRI BOLD signal in children and adults.
Neuroimage. 2005 Apr 15;25(3):824-37. doi: 10.1016/j.neuroimage.2004.12.026.
9
Gaze fixation and the neural circuitry of face processing in autism.
Nat Neurosci. 2005 Apr;8(4):519-26. doi: 10.1038/nn1421. Epub 2005 Mar 6.
10
Face perception: domain specific, not process specific.
Neuron. 2004 Dec 2;44(5):889-98. doi: 10.1016/j.neuron.2004.11.018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验