Suppr超能文献

3D荧光显微镜图像序列中人类细胞有丝分裂期的自动分析

Automated analysis of the mitotic phases of human cells in 3D fluorescence microscopy image sequences.

作者信息

Harder Nathalie, Mora-Bermúdez Felipe, Godinez William J, Ellenberg Jan, Eils Roland, Rohr Karl

机构信息

University of Heidelberg, IPMB, and DKFZ Heidelberg, Dept. Bioinformatics and Functional Genomics, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany.

出版信息

Med Image Comput Comput Assist Interv. 2006;9(Pt 1):840-8. doi: 10.1007/11866565_103.

Abstract

The evaluation of fluorescence microscopy images acquired in high-throughput cell phenotype screens constitutes a substantial bottleneck and motivates the development of automated image analysis methods. Here we introduce a computational scheme to process 3D multi-cell time-lapse images as they are produced in large-scale RNAi experiments. We describe an approach to automatically segment, track, and classify cell nuclei into different mitotic phases. This enables automated analysis of the duration of single phases of the cell life cycle and thus the identification of cell cultures that show an abnormal mitotic behavior. Our scheme proves a high accuracy, suggesting a promising future for automating the evaluation of high-throughput experiments.

摘要

在高通量细胞表型筛选中获取的荧光显微镜图像评估构成了一个重大瓶颈,这推动了自动图像分析方法的发展。在此,我们介绍一种计算方案,用于处理大规模RNAi实验中生成的3D多细胞延时图像。我们描述了一种自动分割、跟踪并将细胞核分类到不同有丝分裂阶段的方法。这使得能够对细胞生命周期单个阶段的持续时间进行自动分析,从而识别出表现出异常有丝分裂行为的细胞培养物。我们的方案证明了高准确性,为高通量实验评估的自动化预示着一个充满希望的未来。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验