Suppr超能文献

检测伪周期时间序列中的时空相关性。

Detecting temporal and spatial correlations in pseudoperiodic time series.

作者信息

Zhang Jie, Luo Xiaodong, Nakamura Tomomichi, Sun Junfeng, Small Michael

机构信息

Department of Electronic and Information Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Jan;75(1 Pt 2):016218. doi: 10.1103/PhysRevE.75.016218. Epub 2007 Jan 26.

Abstract

Recently there has been much attention devoted to exploring the complicated possibly chaotic dynamics in pseudoperiodic time series. Two methods [Zhang, Phys. Rev. E 73, 016216 (2006); Zhang and Small, Phys. Rev. Lett. 96, 238701 (2006)] have been forwarded to reveal the chaotic temporal and spatial correlations, respectively, among the cycles in the time series. Both these methods treat the cycle as the basic unit and design specific statistics that indicate the presence of chaotic dynamics. In this paper, we verify the validity of these statistics to capture the chaotic correlation among cycles by using the surrogate data method. In particular, the statistics computed for the original time series are compared with those from its surrogates. The surrogate data we generate is pseudoperiodic type (PPS), which preserves the inherent periodic components while destroying the subtle nonlinear (chaotic) structure. Since the inherent chaotic correlations among cycles, either spatial or temporal (which are suitably characterized by the proposed statistics), are eliminated through the surrogate generation process, we expect the statistics from the surrogate to take significantly different values than those from the original time series. Hence the ability of the statistics to capture the chaotic correlation in the time series can be validated. Application of this procedure to both chaotic time series and real world data clearly demonstrates the effectiveness of the statistics. We have found clear evidence of chaotic correlations among cycles in human electrocardiogram and vowel time series. Furthermore, we show that this framework is more sensitive to examine the subtle changes in the dynamics of the time series due to the match between PPS surrogate and the statistics adopted. It offers a more reliable tool to reveal the possible correlations among cycles intrinsic to the chaotic nature of the pseudoperiodic time series.

摘要

最近,人们对探索伪周期时间序列中复杂的、可能具有混沌性质的动力学给予了极大关注。已经提出了两种方法[张,《物理评论E》73,016216(2006);张和斯莫尔,《物理评论快报》96,238701(2006)],分别用于揭示时间序列中各周期之间的混沌时间和空间相关性。这两种方法都将周期视为基本单元,并设计了特定的统计量来表明混沌动力学的存在。在本文中,我们使用替代数据方法验证了这些统计量捕捉周期之间混沌相关性的有效性。具体而言,将为原始时间序列计算的统计量与来自其替代序列的统计量进行比较。我们生成的替代数据是伪周期类型(PPS),它保留了固有的周期成分,同时破坏了微妙的非线性(混沌)结构。由于通过替代数据生成过程消除了周期之间固有的混沌相关性,无论是空间上的还是时间上的(由所提出的统计量适当表征),我们预期来自替代序列的统计量与来自原始时间序列的统计量会有显著不同的值。因此,可以验证统计量捕捉时间序列中混沌相关性的能力。将此过程应用于混沌时间序列和实际数据都清楚地证明了这些统计量的有效性。我们在人体心电图和元音时间序列中发现了各周期之间混沌相关性的明确证据。此外,我们表明,由于PPS替代序列与所采用的统计量之间的匹配,该框架在检查时间序列动力学的细微变化时更加敏感。它提供了一个更可靠的工具来揭示伪周期时间序列混沌性质所固有的各周期之间可能的相关性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验