Jampa Maruthi Pradeep Kanth, Sonawane Abhijeet R, Gade Prashant M, Sinha Sudeshna
The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600 113, India.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Feb;75(2 Pt 2):026215. doi: 10.1103/PhysRevE.75.026215. Epub 2007 Feb 27.
We study the spatiotemporal dynamics of a network of coupled chaotic maps modelling neuronal activity, under variation of coupling strength epsilon and degree of randomness in coupling p. We find that at high coupling strengths (epsilon>epsilonfixed) the unstable saddle point solution of the local chaotic maps gets stabilized. The range of coupling where this spatiotemporal fixed point gains stability is unchanged in the presence of randomness in the connections, namely epsilonfixed is invariant under changes in p. As coupling gets weaker (epsilon<epsilonfixed), the spatiotemporal fixed point loses stability, and one obtains chaos. In this regime, when the coupling connections are completely regular (p=0), the network becomes spatiotemporally chaotic. Interestingly however, in the presence of random links (p>0) one obtains spatial synchronization in the network. We find that this range of synchronized chaos increases exponentially with the fraction of random links in the network. Further, in the space of fixed coupling strengths, the synchronization transition occurs at a finite value of p, a scenario quite distinct from the many examples of synchronization transitions at p-->0. Further we show that the synchronization here is robust in the presence of parametric noise, namely in a network of nonidentical neuronal maps. Finally we check the generality of our observations in networks of neurons displaying both spiking and bursting dynamics.
我们研究了一个模拟神经元活动的耦合混沌映射网络的时空动力学,该网络随耦合强度ε和耦合随机性程度p的变化而变化。我们发现,在高耦合强度(ε>ε固定值)下,局部混沌映射的不稳定鞍点解会变得稳定。在连接存在随机性的情况下,这个时空不动点获得稳定性的耦合范围不变,即ε固定值在p变化时保持不变。随着耦合变弱(ε<ε固定值),时空不动点失去稳定性,从而出现混沌。在这种情况下,当耦合连接完全规则(p = 0)时,网络会变得时空混沌。然而有趣的是,在存在随机连接(p>0)的情况下,网络中会出现空间同步。我们发现,这种同步混沌的范围会随着网络中随机连接的比例呈指数增长。此外,在固定耦合强度的空间中,同步转变发生在p的有限值处,这一情况与许多p→0时同步转变的例子截然不同。进一步地,我们表明这里的同步在存在参数噪声的情况下是稳健的,即在一个由非相同神经元映射组成的网络中。最后,我们在显示尖峰和爆发动力学的神经元网络中检验了我们观察结果的普遍性。