Suppr超能文献

层次结构中基于预期的时间序列学习

Anticipation-based temporal sequences learning in hierarchical structure.

作者信息

Starzyk Janusz A, He Haibo

机构信息

School of Electrical Engineering and Computer Science, Ohio University, Athens, OH 45701, USA.

出版信息

IEEE Trans Neural Netw. 2007 Mar;18(2):344-58. doi: 10.1109/TNN.2006.884681.

Abstract

Temporal sequence learning is one of the most critical components for human intelligence. In this paper, a novel hierarchical structure for complex temporal sequence learning is proposed. Hierarchical organization, a prediction mechanism, and one-shot learning characterize the model. In the lowest level of the hierarchy, we use a modified Hebbian learning mechanism for pattern recognition. Our model employs both active 0 and active 1 sensory inputs. A winner-take-all (WTA) mechanism is used to select active neurons that become the input for sequence learning at higher hierarchical levels. Prediction is an essential element of our temporal sequence learning model. By correct prediction, the machine indicates it knows the current sequence and does not require additional learning. When the prediction is incorrect, one-shot learning is executed and the machine learns the new input sequence as soon as the sequence is completed. A four-level hierarchical structure that isolates letters, words, sentences, and strophes is used in this paper to illustrate the model.

摘要

时间序列学习是人类智能最关键的组成部分之一。本文提出了一种用于复杂时间序列学习的新型层次结构。层次组织、预测机制和一次性学习是该模型的特点。在层次结构的最低层,我们使用一种改进的赫布学习机制进行模式识别。我们的模型采用活跃的0和活跃的1感觉输入。赢家通吃(WTA)机制用于选择活跃神经元,这些神经元成为更高层次序列学习的输入。预测是我们时间序列学习模型的一个基本要素。通过正确预测,机器表明它知道当前序列,不需要额外学习。当预测不正确时,执行一次性学习,并且机器在序列完成后立即学习新的输入序列。本文使用一种将字母、单词、句子和节隔离开来的四级层次结构来说明该模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验