Kaltenbach Hans-Michael, Wilke Andreas, Böcker Sebastian
AG Genominformatik, Technische Fakultät, Universität Bielefeld, Bielefeld, Germany.
BMC Bioinformatics. 2007 Mar 26;8:102. doi: 10.1186/1471-2105-8-102.
Mass spectrometry based peptide mass fingerprints (PMFs) offer a fast, efficient, and robust method for protein identification. A protein is digested (usually by trypsin) and its mass spectrum is compared to simulated spectra for protein sequences in a database. However, existing tools for analyzing PMFs often suffer from missing or heuristic analysis of the significance of search results and insufficient handling of missing and additional peaks.
We present an unified framework for analyzing Peptide Mass Fingerprints that offers a number of advantages over existing methods: First, comparison of mass spectra is based on a scoring function that can be custom-designed for certain applications and explicitly takes missing and additional peaks into account. The method is able to simulate almost every additive scoring scheme. Second, we present an efficient deterministic method for assessing the significance of a protein hit, independent of the underlying scoring function and sequence database. We prove the applicability of our approach using biological mass spectrometry data and compare our results to the standard software Mascot.
The proposed framework for analyzing Peptide Mass Fingerprints shows performance comparable to Mascot on small peak lists. Introducing more noise peaks, we are able to keep identification rates at a similar level by using the flexibility introduced by scoring schemes.
基于质谱的肽质量指纹图谱(PMF)为蛋白质鉴定提供了一种快速、高效且可靠的方法。蛋白质经消化(通常用胰蛋白酶)后,其质谱与数据库中蛋白质序列的模拟光谱进行比较。然而,现有的用于分析PMF的工具常常存在对搜索结果的显著性进行缺失或启发式分析,以及对缺失峰和额外峰处理不足的问题。
我们提出了一个用于分析肽质量指纹图谱的统一框架,该框架相对于现有方法具有诸多优势:首先,质谱比较基于一种评分函数,该函数可针对特定应用进行定制设计,并明确考虑了缺失峰和额外峰。该方法能够模拟几乎所有的附加评分方案。其次,我们提出了一种高效的确定性方法来评估蛋白质匹配的显著性,该方法独立于基础评分函数和序列数据库。我们使用生物质谱数据证明了我们方法的适用性,并将我们的结果与标准软件Mascot进行了比较。
所提出的用于分析肽质量指纹图谱的框架在小峰列表上显示出与Mascot相当的性能。通过引入更多噪声峰,我们能够利用评分方案带来的灵活性将鉴定率保持在相似水平。