Suppr超能文献

循规蹈矩的系统生物学:用于通路建模与发现的混合智能系统

Systems biology by the rules: hybrid intelligent systems for pathway modeling and discovery.

作者信息

Bosl William J

机构信息

Harvard Medical School and Children's Hospital Informatics Program at Harvard-MIT Division of Health Sciences and Technology (ChIP@HST), Boston, MA 02115, USA.

出版信息

BMC Syst Biol. 2007 Feb 15;1:13. doi: 10.1186/1752-0509-1-13.

Abstract

BACKGROUND

Expert knowledge in journal articles is an important source of data for reconstructing biological pathways and creating new hypotheses. An important need for medical research is to integrate this data with high throughput sources to build useful models that span several scales. Researchers traditionally use mental models of pathways to integrate information and development new hypotheses. Unfortunately, the amount of information is often overwhelming and these are inadequate for predicting the dynamic response of complex pathways. Hierarchical computational models that allow exploration of semi-quantitative dynamics are useful systems biology tools for theoreticians, experimentalists and clinicians and may provide a means for cross-communication.

RESULTS

A novel approach for biological pathway modeling based on hybrid intelligent systems or soft computing technologies is presented here. Intelligent hybrid systems, which refers to several related computing methods such as fuzzy logic, neural nets, genetic algorithms, and statistical analysis, has become ubiquitous in engineering applications for complex control system modeling and design. Biological pathways may be considered to be complex control systems, which medicine tries to manipulate to achieve desired results. Thus, hybrid intelligent systems may provide a useful tool for modeling biological system dynamics and computational exploration of new drug targets. A new modeling approach based on these methods is presented in the context of hedgehog regulation of the cell cycle in granule cells. Code and input files can be found at the Bionet website: www.chip.ord/~wbosl/Software/Bionet.

CONCLUSION

This paper presents the algorithmic methods needed for modeling complicated biochemical dynamics using rule-based models to represent expert knowledge in the context of cell cycle regulation and tumor growth. A notable feature of this modeling approach is that it allows biologists to build complex models from their knowledge base without the need to translate that knowledge into mathematical form. Dynamics on several levels, from molecular pathways to tissue growth, are seamlessly integrated. A number of common network motifs are examined and used to build a model of hedgehog regulation of the cell cycle in cerebellar neurons, which is believed to play a key role in the etiology of medulloblastoma, a devastating childhood brain cancer.

摘要

背景

期刊文章中的专业知识是重建生物途径和创建新假设的重要数据来源。医学研究的一个重要需求是将这些数据与高通量数据源整合,以构建跨越多个尺度的有用模型。研究人员传统上使用途径的心理模型来整合信息并提出新假设。不幸的是,信息量往往过大,这些模型不足以预测复杂途径的动态反应。允许探索半定量动态的分层计算模型对于理论学家、实验人员和临床医生来说是有用的系统生物学工具,并且可能提供一种交叉交流的方式。

结果

本文提出了一种基于混合智能系统或软计算技术的生物途径建模新方法。智能混合系统,是指模糊逻辑、神经网络、遗传算法和统计分析等几种相关的计算方法,在复杂控制系统建模和设计的工程应用中已变得无处不在。生物途径可被视为复杂控制系统,医学试图对其进行操纵以达到预期结果。因此,混合智能系统可能为生物系统动力学建模和新药物靶点的计算探索提供有用工具。在颗粒细胞细胞周期的刺猬信号调节背景下,提出了一种基于这些方法的新建模方法。代码和输入文件可在生物网络网站上找到:www.chip.ord/~wbosl/Software/Bionet。

结论

本文提出了使用基于规则的模型来表示细胞周期调节和肿瘤生长背景下的专业知识,从而对复杂生化动力学进行建模所需的算法方法。这种建模方法的一个显著特点是,它允许生物学家从其知识库构建复杂模型,而无需将该知识转化为数学形式。从分子途径到组织生长的多个层次的动态被无缝整合。研究了一些常见的网络基序,并用于构建小脑神经元细胞周期的刺猬信号调节模型,该模型被认为在成神经管细胞瘤(一种毁灭性的儿童脑癌)的病因学中起关键作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验