Suppr超能文献

使用向量水平集的曲线/曲面表示与演化及其在基于形状的分割问题中的应用。

Curve/surface representation and evolution using vector level sets with application to the shape-based segmentation problem.

作者信息

Abd El Munim Hossam E, Farag Aly A

机构信息

Computer Vision and Image Processing Laboratory, CVIP LAB Department of Electrical and Computer Engineering, University of Louisville, Louisville, KY 40292, USA.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2007 Jun;29(6):945-58. doi: 10.1109/TPAMI.2007.1100.

Abstract

In this paper, we revisit the implicit front representation and evolution using the vector level set function (VLSF) proposed in [1]. Unlike conventional scalar level sets, this function is designed to have a vector form. The distance from any point to the nearest point on the front has components (projections) in the coordinate directions included in the vector function. This kind of representation is used to evolve closed planar curves and 3D surfaces as well. Maintaining the VLSF property as the distance projections through evolution will be considered together with a detailed derivation of the vector partial differential equation (PDE) for such evolution. A shape-based segmentation framework will be demonstrated as an application of the given implicit representation. The proposed level set function system will be used to represent shapes to give a dissimilarity measure in a variational object registration process. This kind of formulation permits us to better control the process of shape registration, which is an important part in the shape-based segmentation framework. The method depends on a set of training shapes used to build a parametric shape model. The color is taken into consideration besides the shape prior information. The shape model is fitted to the image volume by registration through an energy minimization problem. The approach overcomes the conventional methods problems like point correspondences and weighing coefficients tuning of the evolution (PDEs). It is also suitable for multidimensional data and computationally efficient. Results in 2D and 3D of real and synthetic data will demonstrate the efficiency of the framework.

摘要

在本文中,我们重新审视了使用文献[1]中提出的向量水平集函数(VLSF)的隐式前沿表示和演化。与传统的标量水平集不同,该函数设计为具有向量形式。从任何点到前沿上最近点的距离在向量函数所包含的坐标方向上具有分量(投影)。这种表示也用于演化封闭平面曲线和三维曲面。在演化过程中保持VLSF属性作为距离投影将与这种演化的向量偏微分方程(PDE)的详细推导一起进行考虑。将展示一个基于形状的分割框架作为给定隐式表示的应用。所提出的水平集函数系统将用于表示形状,以便在变分目标配准过程中给出差异度量。这种公式使我们能够更好地控制形状配准过程,这是基于形状的分割框架中的一个重要部分。该方法依赖于一组用于构建参数化形状模型的训练形状。除了形状先验信息外,还考虑了颜色。通过能量最小化问题的配准将形状模型拟合到图像体积。该方法克服了传统方法中的问题,如点对应和演化(PDE)的加权系数调整。它也适用于多维数据且计算效率高。二维和三维真实数据及合成数据的结果将证明该框架的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验