Suppr超能文献

强化物大小对大鼠计时的影响。

The effects of reinforcer magnitude on timing in rats.

作者信息

Ludvig Elliot A, Conover Kent, Shizgal Peter

机构信息

Department of Computing Science, University of Alberta, Edmonton, Canada.

出版信息

J Exp Anal Behav. 2007 Mar;87(2):201-18. doi: 10.1901/jeab.2007.38-06.

Abstract

The relation between reinforcer magnitude and timing behavior was studied using a peak procedure. Four rats received multiple consecutive sessions with both low and high levels of brain stimulation reward (BSR). Rats paused longer and had later start times during sessions when their responses were reinforced with low-magnitude BSR. When estimated by a symmetric Gaussian function, peak times also were earlier; when estimated by a better-fitting asymmetric Gaussian function or by analyzing individual trials, however, these peak-time changes were determined to reflect a mixture of large effects of BSR on start times and no effect on stop times. These results pose a significant dilemma for three major theories of timing (SET, MTS, and BeT), which all predict no effects for chronic manipulations of reinforcer magnitude. We conclude that increased reinforcer magnitude influences timing in two ways: through larger immediate after-effects that delay responding and through anticipatory effects that elicit earlier responding.

摘要

使用峰值程序研究了强化物强度与定时行为之间的关系。四只大鼠接受了多个连续的实验环节,其中既有低水平也有高水平的脑刺激奖励(BSR)。当大鼠的反应以低强度BSR强化时,它们在实验环节中停顿时间更长且开始时间更晚。通过对称高斯函数估计时,峰值时间也更早;然而,通过更合适的不对称高斯函数估计或分析单个试验时,这些峰值时间变化被确定为反映了BSR对开始时间的大影响和对停止时间无影响的混合情况。这些结果给三种主要的定时理论(SET、MTS和BeT)带来了重大困境,这三种理论都预测强化物强度的慢性操纵没有影响。我们得出结论,强化物强度增加通过两种方式影响定时:通过更大的即时后效来延迟反应,以及通过预期效应来引发更早的反应。

相似文献

1
The effects of reinforcer magnitude on timing in rats.
J Exp Anal Behav. 2007 Mar;87(2):201-18. doi: 10.1901/jeab.2007.38-06.
3
Brain Stimulation Reward Supports More Consistent and Accurate Rodent Decision-Making than Food Reward.
eNeuro. 2017 May 1;4(2). doi: 10.1523/ENEURO.0015-17.2017. eCollection 2017 Mar-Apr.
4
Basolateral amygdala lesions and sensitivity to reinforcer magnitude in concurrent chains schedules.
Behav Brain Res. 2008 Aug 22;191(2):210-8. doi: 10.1016/j.bbr.2008.03.028. Epub 2008 Mar 27.
5
Assessing behavioral control across reinforcer solutions on a fixed-ratio schedule of reinforcement in rats.
Alcohol. 2014 Jun;48(4):337-44. doi: 10.1016/j.alcohol.2013.12.006. Epub 2014 Feb 28.
6
Increased generalization in a peak procedure after delayed reinforcement.
Behav Processes. 2019 Dec;169:103978. doi: 10.1016/j.beproc.2019.103978. Epub 2019 Sep 30.
7
Brain stimulation reward performance and sucrose maintained behaviors in alcohol-preferring and -nonpreferring rats.
Alcohol Clin Exp Res. 2005 Apr;29(4):571-83. doi: 10.1097/01.alc.0000158934.50534.b7.
10
Cue-evoked dopamine release in the nucleus accumbens shell tracks reinforcer magnitude during intracranial self-stimulation.
Neuroscience. 2010 Sep 15;169(4):1682-8. doi: 10.1016/j.neuroscience.2010.06.047. Epub 2010 Jun 25.

引用本文的文献

1
Neurocomputational Models of Interval Timing: Seeing the Forest for the Trees.
Adv Exp Med Biol. 2024;1455:51-78. doi: 10.1007/978-3-031-60183-5_4.
2
Motivated to time: Effects of reinforcer devaluation and opportunity cost on interval timing.
Learn Behav. 2023 Sep;51(3):308-320. doi: 10.3758/s13420-023-00572-6. Epub 2023 Feb 13.
3
Temporal prediction error triggers amygdala-dependent memory updating in appetitive operant conditioning in rats.
Front Behav Neurosci. 2023 Jan 10;16:1060587. doi: 10.3389/fnbeh.2022.1060587. eCollection 2022.
5
Striatal dopamine D1 receptors control motivation to respond, but not interval timing, during the timing task.
Learn Mem. 2020 Dec 15;28(1):24-29. doi: 10.1101/lm.052266.120. Print 2021 Jan.
6
An Information Theoretic Approach to Model Selection: A Tutorial with Monte Carlo Confirmation.
Perspect Behav Sci. 2019 Jun 19;42(3):583-616. doi: 10.1007/s40614-019-00206-1. eCollection 2019 Sep.
7
Differential reinforcement of low rates differentially decreased timing precision.
Behav Processes. 2018 Jun;151:111-118. doi: 10.1016/j.beproc.2018.02.022. Epub 2018 Mar 30.
9
Reward Contrast Effects on Impulsive Choice and Timing in Rats.
Timing Time Percept. 2016;4(2):147-166. doi: 10.1163/22134468-00002059.

本文引用的文献

1
Prolonged rewarding stimulation of the rat medial forebrain bundle: neurochemical and behavioral consequences.
Behav Neurosci. 2006 Aug;120(4):888-904. doi: 10.1037/0735-7044.120.4.888.
2
Temporal control in fixed-interval schedules.
J Exp Anal Behav. 1994 Jan;61(1):1-9. doi: 10.1901/jeab.1994.61-1.
3
Effects of reinforcement magnitude on interval and ratio schedules.
J Exp Anal Behav. 1974 Nov;22(3):553-60. doi: 10.1901/jeab.1974.22-553.
4
Behavioral aftereffects of reinforcement and its omission as a function of reinforcement magnitude.
J Exp Anal Behav. 1973 May;19(3):459-68. doi: 10.1901/jeab.1973.19-459.
5
Effect of reinforcement duration on fixed-interval responding.
J Exp Anal Behav. 1970 Jan;13(1):9-11. doi: 10.1901/jeab.1970.13-9.
6
Reinforcement omission on fixed-interval schedules.
J Exp Anal Behav. 1969 Sep;12(5):689-700. doi: 10.1901/jeab.1969.12-689.
7
A two-state analysis of fixed-interval responding in the pigeon.
J Exp Anal Behav. 1969 Sep;12(5):677-87. doi: 10.1901/jeab.1969.12-677.
8
Effects of d-amphetamine on the behavior of pigeons exposed to the peak procedure.
Behav Processes. 2006 Feb 28;71(2-3):268-85. doi: 10.1016/j.beproc.2005.12.005. Epub 2006 Jan 18.
9
The effects of interval duration on temporal tracking and alternation learning.
J Exp Anal Behav. 2005 May;83(3):243-62. doi: 10.1901/jeab.2005.88-04.
10
Effects of D-amphetamine on temporal discrimination in pigeons.
Behav Pharmacol. 2005 Jul;16(4):193-208. doi: 10.1097/01.fbp.0000171773.69292.bd.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验