Suppr超能文献

经直肠超声图像中前列腺癌的边界划定

Boundary delineation in transrectal ultrasound image for prostate cancer.

作者信息

Zhang Ying, Sankar Ravi, Qian Wei

机构信息

Department of Electrical Engineering, University of South Florida, Tampa, FL 33620, USA.

出版信息

Comput Biol Med. 2007 Nov;37(11):1591-9. doi: 10.1016/j.compbiomed.2007.02.008. Epub 2007 Apr 27.

Abstract

This paper presents a new advanced automatic edge delineation model for the detection and diagnosis of prostate cancer on transrectal ultrasound (TRUS) images. The proposed model is to improve prostate boundary detection system by modifying a set of preprocessing algorithms including tree-structured nonlinear filter (TSF), directional wavelet transforms (DWT) and tree-structured wavelet transform (TSWT). The model consists of a preprocessing module and a segmentation module. The preprocessing module is implemented for noise suppression, image smoothing and boundary enhancement. The active contours model is used in the segmentation module for prostate boundary detection in two-dimensional (2D) TRUS images. Experimental results show that the addition of the preprocessing module improves the accuracy and sensitivity of the segmentation module, compared to the implementation of the segmentation module alone. It is believed that the proposed automatic boundary detection module for the TRUS images is a promising approach, which provides an efficient and robust detection and diagnosis strategy and acts as "second opinion" for the physician's interpretation of prostate cancer.

摘要

本文提出了一种新的先进自动边缘描绘模型,用于经直肠超声(TRUS)图像上前列腺癌的检测与诊断。所提出的模型旨在通过修改一组预处理算法来改进前列腺边界检测系统,这些算法包括树状结构非线性滤波器(TSF)、方向小波变换(DWT)和树状结构小波变换(TSWT)。该模型由一个预处理模块和一个分割模块组成。预处理模块用于噪声抑制、图像平滑和边界增强。主动轮廓模型用于分割模块,以在二维(2D)TRUS图像中检测前列腺边界。实验结果表明,与单独实施分割模块相比,添加预处理模块提高了分割模块的准确性和灵敏度。据信,所提出的用于TRUS图像的自动边界检测模块是一种很有前景的方法,它提供了一种高效且稳健的检测与诊断策略,并可作为医生对前列腺癌解读的“第二意见”。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验