Sindelar Charles V, Downing Kenneth H
Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
J Cell Biol. 2007 May 7;177(3):377-85. doi: 10.1083/jcb.200612090. Epub 2007 Apr 30.
We have used cryo-electron microscopy of kinesin-decorated microtubules to resolve the structure of the motor protein kinesin's crucial nucleotide response elements, switch I and the switch II helix, in kinesin's poorly understood nucleotide-free state. Both of the switch elements undergo conformational change relative to the microtubule-free state. The changes in switch I suggest a role for it in "ejecting" adenosine diphosphate when kinesin initially binds to the microtubule. The switch II helix has an N-terminal extension, apparently stabilized by conserved microtubule contacts, implying a microtubule activation mechanism that could convey the state of the bound nucleotide to kinesin's putative force-delivering element (the "neck linker"). In deriving this structure, we have adapted an image-processing technique, single-particle reconstruction, for analyzing decorated microtubules. The resulting reconstruction visualizes the asymmetric seam present in native, 13-protofilament microtubules, and this method will provide an avenue to higher-resolution characterization of a variety of microtubule- binding proteins, as well as the microtubule itself.
我们利用结合有驱动蛋白的微管的冷冻电子显微镜技术,解析了驱动蛋白在其尚未被充分理解的无核苷酸状态下,关键核苷酸反应元件开关I和开关II螺旋的结构。相对于无微管状态,这两个开关元件都发生了构象变化。开关I的变化表明,当驱动蛋白最初与微管结合时,它在“排出”二磷酸腺苷中发挥作用。开关II螺旋有一个N端延伸,显然通过保守的微管接触得以稳定,这意味着一种微管激活机制,该机制可将结合核苷酸的状态传递给驱动蛋白假定的力传递元件(“颈部连接体”)。在推导该结构时,我们采用了一种图像处理技术——单颗粒重建,用于分析结合有蛋白的微管。所得重建结果可视化了天然13原纤维微管中存在的不对称接缝,并且该方法将为多种微管结合蛋白以及微管本身的高分辨率表征提供一条途径。