Habimana Olivier, Le Goff Carine, Juillard Vincent, Bellon-Fontaine Marie-Noëlle, Buist Girbe, Kulakauskas Saulius, Briandet Romain
Unité Mixte de Recherche en Bioadhésion et Hygiène des Matériaux, INRA-ENSIA, 91744 Massy cedex, France.
BMC Microbiol. 2007 May 2;7:36. doi: 10.1186/1471-2180-7-36.
The first step in biofilm formation is bacterial attachment to solid surfaces, which is dependent on the cell surface physico-chemical properties. Cell wall anchored proteins (CWAP) are among the known adhesins that confer the adhesive properties to pathogenic Gram-positive bacteria. To investigate the role of CWAP of non-pathogen Gram-positive bacteria in the initial steps of biofilm formation, we evaluated the physico-chemical properties and adhesion to solid surfaces of Lactococcus lactis. To be able to grow in milk this dairy bacterium expresses a cell wall anchored proteinase PrtP for breakdown of milk caseins.
The influence of the anchored cell wall proteinase PrtP on microbial surface physico-chemical properties, and consequently on adhesion, was evaluated using lactococci carrying different alleles of prtP. The presence of cell wall anchored proteinase on the surface of lactococcal cells resulted in an increased affinity to solvents with different physico-chemical properties (apolar and Lewis acid-base solvents). These properties were observed regardless of whether the PrtP variant was biologically active or not, and were not observed in strains without PrtP. Anchored PrtP displayed a significant increase in cell adhesion to solid glass and tetrafluoroethylene surfaces.
Obtained results indicate that exposure of an anchored cell wall proteinase PrtP, and not its proteolytic activity, is responsible for greater cell hydrophobicity and adhesion. The increased bacterial affinity to polar and apolar solvents indicated that exposure of PrtP on lactococcal cell surface could enhance the capacity to exchange attractive van der Waals interactions, and consequently increase their adhesion to different types of solid surfaces and solvents.
生物膜形成的第一步是细菌附着于固体表面,这取决于细胞表面的物理化学性质。细胞壁锚定蛋白(CWAP)是已知的赋予致病性革兰氏阳性菌黏附特性的黏附素之一。为了研究非致病性革兰氏阳性菌的CWAP在生物膜形成初始步骤中的作用,我们评估了乳酸乳球菌的物理化学性质及其对固体表面的黏附。为了能够在牛奶中生长,这种乳制品细菌表达一种细胞壁锚定蛋白酶PrtP,用于分解牛奶中的酪蛋白。
使用携带不同prtP等位基因的乳酸乳球菌评估了锚定的细胞壁蛋白酶PrtP对微生物表面物理化学性质以及对黏附的影响。乳酸乳球菌细胞表面存在细胞壁锚定蛋白酶会导致对具有不同物理化学性质的溶剂(非极性和路易斯酸碱溶剂)的亲和力增加。无论PrtP变体是否具有生物活性,均观察到这些性质,而在没有PrtP的菌株中未观察到。锚定的PrtP对固体玻璃和四氟乙烯表面的细胞黏附显著增加。
获得的结果表明,锚定的细胞壁蛋白酶PrtP的暴露而非其蛋白水解活性导致了更大的细胞疏水性和黏附性。细菌对极性和非极性溶剂亲和力的增加表明,PrtP在乳酸乳球菌细胞表面的暴露可以增强交换有吸引力的范德华相互作用的能力,从而增加它们对不同类型固体表面和溶剂的黏附。