Suppr超能文献

胆固醇水平升高会损害肺表面活性物质自组装成功能性薄膜的过程。

An elevated level of cholesterol impairs self-assembly of pulmonary surfactant into a functional film.

作者信息

Leonenko Zoya, Gill Simardeep, Baoukina Svetlana, Monticelli Luca, Doehner Jana, Gunasekara Lasantha, Felderer Florian, Rodenstein Mathias, Eng Lukas M, Amrein Matthias

机构信息

Department of Cell Biology and Anatomy, Faculty of Medicine, Faculty of Science, University of Calgary, Calgary, Alberta, Canada.

出版信息

Biophys J. 2007 Jul 15;93(2):674-83. doi: 10.1529/biophysj.107.106310. Epub 2007 May 4.

Abstract

In adult respiratory distress syndrome, the primary function of pulmonary surfactant to strongly reduce the surface tension of the air-alveolar interface is impaired, resulting in diminished lung compliance, a decreased lung volume, and severe hypoxemia. Dysfunction coincides with an increased level of cholesterol in surfactant which on its own or together with other factors causes surfactant failure. In the current study, we investigated by atomic force microscopy and Kelvin-probe force microscopy how the increased level of cholesterol disrupts the assembly of an efficient film. Functional surfactant films underwent a monolayer-bilayer conversion upon contraction and resulted in a film with lipid bilayer stacks, scattered over a lipid monolayer. Large stacks were at positive electrical potential, small stacks at negative potential with respect to the surrounding monolayer areas. Dysfunctional films formed only few stacks. The surface potential of the occasional stacks was also not different from the surrounding monolayer. Based on film topology and potential distribution, we propose a mechanism for formation of stacked bilayer patches whereby the helical surfactant-associated protein SP-C becomes inserted into the bilayers with defined polarity. We discuss the functional role of the stacks as mechanically reinforcing elements and how an elevated level of cholesterol inhibits the formation of the stacks. This offers a simple biophysical explanation for surfactant inhibition in adult respiratory distress syndrome and possible targets for treatment.

摘要

在成人呼吸窘迫综合征中,肺表面活性剂降低气-肺泡界面表面张力的主要功能受损,导致肺顺应性降低、肺容积减小和严重低氧血症。功能障碍与表面活性剂中胆固醇水平升高同时出现,胆固醇自身或与其他因素共同导致表面活性剂功能衰竭。在本研究中,我们通过原子力显微镜和开尔文探针力显微镜研究了胆固醇水平升高如何破坏高效膜的组装。功能性表面活性剂膜在收缩时经历单层-双层转变,形成由脂质双层堆叠组成的膜,散布在脂质单层上。相对于周围的单层区域,大的堆叠具有正电势,小的堆叠具有负电势。功能失调的膜仅形成少量堆叠。偶尔形成的堆叠的表面电势与周围的单层也没有差异。基于膜拓扑结构和电势分布,我们提出了一种堆叠双层斑块形成的机制,即螺旋状表面活性剂相关蛋白SP-C以特定极性插入双层中。我们讨论了堆叠作为机械增强元件的功能作用以及胆固醇水平升高如何抑制堆叠的形成。这为成人呼吸窘迫综合征中表面活性剂抑制提供了一个简单的生物物理解释以及可能的治疗靶点。

相似文献

1
An elevated level of cholesterol impairs self-assembly of pulmonary surfactant into a functional film.
Biophys J. 2007 Jul 15;93(2):674-83. doi: 10.1529/biophysj.107.106310. Epub 2007 May 4.
2
Methyl-beta-cyclodextrin restores the structure and function of pulmonary surfactant films impaired by cholesterol.
Biochim Biophys Acta. 2010 May;1798(5):986-94. doi: 10.1016/j.bbamem.2009.12.003. Epub 2009 Dec 16.
3
Electrical surface potential of pulmonary surfactant.
Langmuir. 2006 Nov 21;22(24):10135-9. doi: 10.1021/la061718g.
4
Effect of SP-C on surface potential distribution in pulmonary surfactant: Atomic force microscopy and Kelvin probe force microscopy study.
Ultramicroscopy. 2009 Jul;109(8):968-73. doi: 10.1016/j.ultramic.2009.03.046. Epub 2009 Mar 28.
5
Effect of cholesterol on the physical properties of pulmonary surfactant films: atomic force measurements study.
Ultramicroscopy. 2006 Jun-Jul;106(8-9):687-94. doi: 10.1016/j.ultramic.2006.02.007. Epub 2006 Apr 18.
6
The role of multilayers in preventing the premature buckling of the pulmonary surfactant.
Biochim Biophys Acta Biomembr. 2017 Aug;1859(8):1372-1380. doi: 10.1016/j.bbamem.2017.05.004. Epub 2017 May 10.
7
Phospholipid packing and hydration in pulmonary surfactant membranes and films as sensed by LAURDAN.
Biochim Biophys Acta. 2011 Mar;1808(3):696-705. doi: 10.1016/j.bbamem.2010.11.019. Epub 2010 Nov 30.
8
9
Effect of acute lung injury on structure and function of pulmonary surfactant films.
Am J Respir Cell Mol Biol. 2004 May;30(5):641-50. doi: 10.1165/rcmb.2003-0279OC. Epub 2003 Nov 20.
10
Interfacial organizations of gel phospholipid and cholesterol in bovine lung surfactant films.
Langmuir. 2007 Apr 10;23(8):4421-31. doi: 10.1021/la062513a. Epub 2007 Mar 7.

引用本文的文献

2
Biophysical analysis of gelatin and PLGA nanoparticle interactions with complex biomimetic lung surfactant models.
RSC Adv. 2022 Sep 30;12(43):27918-27932. doi: 10.1039/d2ra02859j. eCollection 2022 Sep 28.
3
Effects of pleural drainage on oxygenation in critically ill patients.
Acute Med Surg. 2020 Mar 10;7(1):e489. doi: 10.1002/ams2.489. eCollection 2020 Jan-Dec.
5
Alveolar Dynamics and Beyond - The Importance of Surfactant Protein C and Cholesterol in Lung Homeostasis and Fibrosis.
Front Physiol. 2020 May 5;11:386. doi: 10.3389/fphys.2020.00386. eCollection 2020.
6
Inhibition and counterinhibition of Surfacen, a clinical lung surfactant of natural origin.
PLoS One. 2018 Sep 20;13(9):e0204050. doi: 10.1371/journal.pone.0204050. eCollection 2018.
7
Surfactant Dysfunction in ARDS and Bronchiolitis is Repaired with Cyclodextrins.
Mil Med. 2018 Mar 1;183(suppl_1):207-215. doi: 10.1093/milmed/usx204.
8
Divide & Conquer: Surfactant Protein SP-C and Cholesterol Modulate Phase Segregation in Lung Surfactant.
Biophys J. 2017 Aug 22;113(4):847-859. doi: 10.1016/j.bpj.2017.06.059.
10
Effect of Lung Surfactant Protein SP-C and SP-C-Promoted Membrane Fragmentation on Cholesterol Dynamics.
Biophys J. 2016 Oct 18;111(8):1703-1713. doi: 10.1016/j.bpj.2016.09.016.

本文引用的文献

2
Modification of tryptophan and methionine residues is implicated in the oxidative inactivation of surfactant protein B.
Biochemistry. 2007 May 8;46(18):5604-15. doi: 10.1021/bi062304p. Epub 2007 Apr 11.
3
Electrical surface potential of pulmonary surfactant.
Langmuir. 2006 Nov 21;22(24):10135-9. doi: 10.1021/la061718g.
4
Protein-lipid interactions and surface activity in the pulmonary surfactant system.
Chem Phys Lipids. 2006 Jun;141(1-2):105-18. doi: 10.1016/j.chemphyslip.2006.02.017. Epub 2006 Mar 20.
5
6
Biochemical parameters of bronchoalveolar lavage fluid in fat embolism.
Intensive Care Med. 2006 Jan;32(1):116-23. doi: 10.1007/s00134-005-2868-x. Epub 2005 Dec 2.
7
Pulmonary surfactant function is abolished by an elevated proportion of cholesterol.
Biochim Biophys Acta. 2005 Oct 15;1737(1):27-35. doi: 10.1016/j.bbalip.2005.09.002. Epub 2005 Oct 10.
8
The alpha helix dipole: screened out?
Structure. 2005 Jun;13(6):849-55. doi: 10.1016/j.str.2005.03.010.
9
Inactivation of pulmonary surfactant due to serum-inhibited adsorption and reversal by hydrophilic polymers: experimental.
Biophys J. 2005 Sep;89(3):1769-79. doi: 10.1529/biophysj.105.062620. Epub 2005 May 27.
10
Multilayer structures in lipid monolayer films containing surfactant protein C: effects of cholesterol and POPE.
Biophys J. 2005 Apr;88(4):2638-49. doi: 10.1529/biophysj.104.050823. Epub 2005 Jan 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验