Dicks E, Teague J W, Stephens P, Raine K, Yates A, Mattocks C, Tarpey P, Butler A, Menzies A, Richardson D, Jenkinson A, Davies H, Edkins S, Forbes S, Gray K, Greenman C, Shepherd R, Stratton M R, Futreal P A, Wooster R
Cancer Genome Project, Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
Bioinformatics. 2007 Jul 1;23(13):1689-91. doi: 10.1093/bioinformatics/btm152. Epub 2007 May 7.
The undertaking of large-scale DNA sequencing screens for somatic variants in human cancers requires accurate and rapid processing of traces for variants. Due to their often aneuploid nature and admixed normal tissue, heterozygous variants found in primary cancers are often subtle and difficult to detect. To address these issues, we have developed a mutation detection algorithm, AutoCSA, specifically optimized for the high throughput screening of cancer samples.
对人类癌症中的体细胞变异进行大规模DNA测序筛查,需要对变异痕迹进行准确且快速的处理。由于原发性癌症通常具有非整倍体性质且混有正常组织,在原发性癌症中发现的杂合变异往往很细微且难以检测。为解决这些问题,我们开发了一种突变检测算法AutoCSA,它是专门针对癌症样本的高通量筛查进行优化的。