Suppr超能文献

Monitoring temperature and light exposure of biosamples exposed to ultraviolet and low energy radiation.

作者信息

Chen Hsin-Kai, Waite Gabi Nindl, Miller Penney L, Hughes Ellen F, Waite Lee R

机构信息

Applied Biology and Biomedical Engineering, Rose-Hulman Institute of Technology Terre Haute, IN 47803, USA.

出版信息

Biomed Sci Instrum. 2007;43:312-7.

Abstract

We previously showed that T-lymphocytes produce catalytic amounts of hydrogen peroxide (H2O2) in a membrane-associated process when irradiated with narrowband ultraviolet B (UVB) light. This form of phototherapy is thought to be highly effective for treatment of inflammatory skin diseases such as psoriasis, but also includes the potential for severe burning and development of skin cancer. Consequently, information on the therapeutic mechanism of narrowband UVB phototherapy and its regulation is warranted. Our laboratory is researching the mechanistic involvement of T-cell H2O2 production and its potential regulation by low energy electromagnetic field (EMF) radiation, which has been shown to beneficially influence inflammatory diseases such as psoriasis. To study photochemical H2O2 production in small samples such as suspensions of T-lymphocyte cell extracts, we use a reactor in which 12 microliter-sized samples are exposed to UVB. We simultaneously operate two identical systems, one for experimental, the other for control samples, within a walk-in environmental chamber maintained at 37 degrees C. The current paper addresses the control of UVB light exposure and temperature in our experimental setup. We quantified UVB light b y radiometric sp ot measurements and by chemical potassium ferrioxalate actinometry. We modified the actinometer so that UVB light of 5-hour experiments could be detected. Temperature was controlled by air convection and remained constant within 0.5 degrees C in air and liquid samples. Preliminary data of the effect of low energy EMF radiation on T-cell H2O2 production are presented.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验