Suppr超能文献

在两个由全基因组复制产生的酵母物种中,对数千对重复基因进行独立分类。

Independent sorting-out of thousands of duplicated gene pairs in two yeast species descended from a whole-genome duplication.

作者信息

Scannell Devin R, Frank A Carolin, Conant Gavin C, Byrne Kevin P, Woolfit Megan, Wolfe Kenneth H

机构信息

Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland.

出版信息

Proc Natl Acad Sci U S A. 2007 May 15;104(20):8397-402. doi: 10.1073/pnas.0608218104. Epub 2007 May 9.

Abstract

Among yeasts that underwent whole-genome duplication (WGD), Kluyveromyces polysporus represents the lineage most distant from Saccharomyces cerevisiae. By sequencing the K. polysporus genome and comparing it with the S. cerevisiae genome using a likelihood model of gene loss, we show that these species diverged very soon after the WGD, when their common ancestor contained >9,000 genes. The two genomes subsequently converged onto similar current sizes (5,600 protein-coding genes each) and independently retained sets of duplicated genes that are strikingly similar. Almost half of their surviving single-copy genes are not orthologs but paralogs formed by WGD, as would be expected if most gene pairs were resolved independently. In addition, by comparing the pattern of gene loss among K. polysporus, S. cerevisiae, and three other yeasts that diverged after the WGD, we show that the patterns of gene loss changed over time. Initially, both members of a duplicate pair were equally likely to be lost, but loss of the same gene copy in independent lineages was increasingly favored at later time points. This trend parallels an increasing restriction of reciprocal gene loss to more slowly evolving gene pairs over time and suggests that, as duplicate genes diverged, one gene copy became favored over the other. The apparent low initial sequence divergence of the gene pairs leads us to propose that the yeast WGD was probably an autopolyploidization.

摘要

在经历了全基因组复制(WGD)的酵母中,多孢克鲁维酵母代表了与酿酒酵母亲缘关系最远的谱系。通过对多孢克鲁维酵母基因组进行测序,并使用基因丢失的似然模型将其与酿酒酵母基因组进行比较,我们发现这些物种在全基因组复制后不久就发生了分化,当时它们的共同祖先包含超过9000个基因。随后,这两个基因组收敛到相似的当前大小(每个都有5600个蛋白质编码基因),并独立保留了惊人相似的重复基因集。它们现存的单拷贝基因中,几乎一半不是直系同源基因,而是由全基因组复制形成的旁系同源基因,这与大多数基因对独立解析的预期一致。此外,通过比较多孢克鲁维酵母、酿酒酵母以及在全基因组复制后分化的其他三种酵母之间的基因丢失模式,我们发现基因丢失模式随时间发生了变化。最初,重复基因对的两个成员丢失的可能性相同,但在后来的时间点,独立谱系中相同基因拷贝的丢失越来越受到青睐。这种趋势与随着时间推移相互基因丢失越来越局限于进化较慢的基因对相平行,这表明随着重复基因的分化,一个基因拷贝比另一个更受青睐。基因对明显较低的初始序列差异使我们提出酵母的全基因组复制可能是一次同源多倍体化事件。

相似文献

1
Independent sorting-out of thousands of duplicated gene pairs in two yeast species descended from a whole-genome duplication.
Proc Natl Acad Sci U S A. 2007 May 15;104(20):8397-402. doi: 10.1073/pnas.0608218104. Epub 2007 May 9.
2
Yeast genome duplication was followed by asynchronous differentiation of duplicated genes.
Nature. 2003 Feb 20;421(6925):848-52. doi: 10.1038/nature01419.
3
Relaxation of yeast mitochondrial functions after whole-genome duplication.
Genome Res. 2008 Sep;18(9):1466-71. doi: 10.1101/gr.074674.107. Epub 2008 Jul 30.
5
Probabilistic cross-species inference of orthologous genomic regions created by whole-genome duplication in yeast.
Genetics. 2008 Jul;179(3):1681-92. doi: 10.1534/genetics.107.074450. Epub 2008 Jun 18.
6
Estimating the time to the whole-genome duplication and the duration of concerted evolution via gene conversion in yeast.
Genetics. 2005 Sep;171(1):63-9. doi: 10.1534/genetics.105.043869. Epub 2005 Jun 21.
7
Identity and divergence of protein domain architectures after the yeast whole-genome duplication event.
Mol Biosyst. 2010 Nov;6(11):2305-15. doi: 10.1039/c003507f. Epub 2010 Aug 26.
8
Molecular evidence for an ancient duplication of the entire yeast genome.
Nature. 1997 Jun 12;387(6634):708-13. doi: 10.1038/42711.
9
Reorganization of adjacent gene relationships in yeast genomes by whole-genome duplication and gene deletion.
Mol Biol Evol. 2006 Jun;23(6):1136-43. doi: 10.1093/molbev/msj121. Epub 2006 Mar 9.
10
Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae.
Nature. 2004 Apr 8;428(6983):617-24. doi: 10.1038/nature02424. Epub 2004 Mar 7.

引用本文的文献

4
Genomic factors shape carbon and nitrogen metabolic niche breadth across Saccharomycotina yeasts.
Science. 2024 Apr 26;384(6694):eadj4503. doi: 10.1126/science.adj4503.
6
Parallel nonfunctionalization of CK1δ/ε kinase ohnologs following a whole-genome duplication event.
bioRxiv. 2023 Oct 2:2023.10.02.560513. doi: 10.1101/2023.10.02.560513.
7
Evolutionary trade-off and mutational bias could favor transcriptional over translational divergence within paralog pairs.
PLoS Genet. 2023 May 26;19(5):e1010756. doi: 10.1371/journal.pgen.1010756. eCollection 2023 May.
8
9
Genome doubling enabled the expansion of yeast vesicle traffic pathways.
Sci Rep. 2022 Jul 2;12(1):11213. doi: 10.1038/s41598-022-15419-9.
10
Species Tree Estimation and the Impact of Gene Loss Following Whole-Genome Duplication.
Syst Biol. 2022 Oct 12;71(6):1348-1361. doi: 10.1093/sysbio/syac040.

本文引用的文献

1
The Origin of Interspecific Genomic Incompatibility via Gene Duplication.
Am Nat. 2000 Dec;156(6):590-605. doi: 10.1086/316992.
3
Independent ancient polyploidy events in the sister families Brassicaceae and Cleomaceae.
Plant Cell. 2006 May;18(5):1152-65. doi: 10.1105/tpc.106.041111. Epub 2006 Apr 14.
4
Multiple rounds of speciation associated with reciprocal gene loss in polyploid yeasts.
Nature. 2006 Mar 16;440(7082):341-5. doi: 10.1038/nature04562.
5
After the duplication: gene loss and adaptation in Saccharomyces genomes.
Genetics. 2006 Feb;172(2):863-72. doi: 10.1534/genetics.105.048900. Epub 2005 Dec 1.
6
The Yeast Gene Order Browser: combining curated homology and syntenic context reveals gene fate in polyploid species.
Genome Res. 2005 Oct;15(10):1456-61. doi: 10.1101/gr.3672305. Epub 2005 Sep 16.
7
Gene complexity and gene duplicability.
Curr Biol. 2005 Jun 7;15(11):1016-21. doi: 10.1016/j.cub.2005.04.035.
8
Modeling gene and genome duplications in eukaryotes.
Proc Natl Acad Sci U S A. 2005 Apr 12;102(15):5454-9. doi: 10.1073/pnas.0501102102. Epub 2005 Mar 30.
9
The Genomes of Oryza sativa: a history of duplications.
PLoS Biol. 2005 Feb;3(2):e38. doi: 10.1371/journal.pbio.0030038. Epub 2005 Feb 1.
10
Genome duplication led to highly selective expansion of the Arabidopsis thaliana proteome.
Trends Genet. 2004 Oct;20(10):461-4. doi: 10.1016/j.tig.2004.07.008.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验