Ermolenko Dmitri N, Majumdar Zigurts K, Hickerson Robyn P, Spiegel P Clint, Clegg Robert M, Noller Harry F
Center for Molecular Biology of RNA and Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.
J Mol Biol. 2007 Jul 13;370(3):530-40. doi: 10.1016/j.jmb.2007.04.042. Epub 2007 Apr 20.
Protein synthesis is believed to be a dynamic process, involving structural rearrangements of the ribosome. Cryo-EM reconstructions of certain elongation factor G (EF-G)-containing complexes have led to the proposal that translocation of tRNA and mRNA through the ribosome, from the A to P to E sites, is accompanied by a rotational movement between the two ribosomal subunits. Here, we have used Förster resonance energy transfer (FRET) to monitor changes in the relative orientation of the ribosomal subunits in different complexes trapped at intermediate stages of translocation in solution. Binding of EF-G to the ribosome in the presence of the non-hydrolyzable GTP analogue GDPNP or GTP plus fusidic acid causes an increase in the efficiency of energy transfer between fluorophores introduced into proteins S11 in the 30 S subunit and L9 in the 50 S subunit, and a decrease in energy transfer between S6 and L9. Similar anti-correlated changes in energy transfer occur upon binding the GTP-requiring release factor RF3. These changes are consistent with the counter-clockwise rotation of the 30 S subunit relative to the 50 S subunit observed in cryo-EM studies. Reaction of ribosomal complexes containing the peptidyl-tRNA analogues N-Ac-Phe-tRNAPhe, N-Ac-Met-tRNAMet or f-Met-tRNAfMet with puromycin, conditions favoring movement of the resulting deacylated tRNAs into the P/E hybrid state, leads to similar changes in FRET. Conversely, treatment of a ribosomal complex containing deacylated and peptidyl-tRNAs bound in the A/P and P/E states, respectively, with EF-G.GTP causes reversal of the FRET changes. The use of FRET has enabled direct observation of intersubunit movement in solution, provides independent evidence that formation of the hybrid state is coupled to rotation of the 30 S subunit and shows that the intersubunit movement is reversed during the second step of translocation.
蛋白质合成被认为是一个动态过程,涉及核糖体的结构重排。对某些含有延伸因子G(EF-G)的复合物进行的冷冻电镜重建表明,tRNA和mRNA通过核糖体从A位点到P位点再到E位点的易位过程伴随着两个核糖体亚基之间的旋转运动。在这里,我们利用福斯特共振能量转移(FRET)来监测溶液中处于易位中间阶段的不同复合物中核糖体亚基相对取向的变化。在不可水解的GTP类似物GDPNP或GTP加夫西地酸存在的情况下,EF-G与核糖体结合会导致引入30S亚基中蛋白质S11和50S亚基中L9的荧光团之间的能量转移效率增加,而S6和L9之间的能量转移减少。结合需要GTP的释放因子RF3时,能量转移也会发生类似的反相关变化。这些变化与冷冻电镜研究中观察到的30S亚基相对于50S亚基的逆时针旋转一致。含有肽基-tRNA类似物N-乙酰苯丙氨酸-tRNAPhe、N-乙酰甲硫氨酸-tRNAMet或f-甲硫氨酸-tRNAfMet的核糖体复合物与嘌呤霉素反应,这种条件有利于产生的脱酰基tRNA移动到P/E杂合状态,导致FRET发生类似变化。相反,用EF-G.GTP处理分别以A/P和P/E状态结合脱酰基和肽基tRNA的核糖体复合物会导致FRET变化逆转。FRET的使用使得能够直接观察溶液中的亚基间运动,提供了独立的证据表明杂合状态的形成与30S亚基的旋转相关,并表明亚基间运动在易位的第二步中发生逆转。